• Title/Summary/Keyword: Pll

Search Result 952, Processing Time 0.024 seconds

A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive (자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

The Instantaneous Phase-Tracking in PLL using the DFT Algorithm (DFT 알고리즘을 이용한 PLL의 순시 추종)

  • Kim, Youn-Seo;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.141-148
    • /
    • 2008
  • An utility voltage information, including the frequency, phase angle and amplitude is very important in many industrial systems. The grid-connected photovoltaic system in the limelight as alternative energy needs utility voltage information such as frequency, phase angle and magnitude to connect the grid-line. In this paper, it proposes the instantaneous phase-tracking in PLL that uses the frequency from the utility voltage as a sync signal and locks the phase with compensation for phase difference from DPT algorithm. It also proposes not only DFT algorithm execution by every sample not by one period, but also phase-tracking method in a wide range of frequency not a fixed one. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the experiment.

A Design of Phase-Frequency Detector for Low Jitter and Fast Locking Time of PLL (PLL 고정시간의 저감대책 수립과 저 지터 구현을 위한 위상-주파수 감지기의 설계)

  • Jung, S.M.;Lee, J.S.;Kim, J.R.;Woo, Y.S.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.742-744
    • /
    • 1999
  • In this paper, a new precharge type PFD for fast locking time of PLL is suggested. It is realized by inserting NMOS transistor and inverter into the precharge part of PFD for isolating the reset of the Up signal from the feedback signal. The new precharge type PFD generates the Up signal while the feedback signal is fixed at a high level. Therefore the new PFD output is increased than the conventional precharge type PFD output. As a result of the increased PFD output, fast locking of PLLs is achieved. Additionally, with control the falling time of the inverter, the dead-zone is reduced and the jitter characteristics are improved. The whole characteristics of PFD and PLL are simulated by using HSPICE. Simulation results show that the dead-zone is 20ps and the locking time of PLL using the new PFD is 38ns at the 350MHz frequency of referecne signal. This value is quite small compared with conventional PFD.

  • PDF

Development of Millimeter-Wave band PLL System using YIG Oscillator (YIG 발진기를 이용한 밀리미터파대역의 PLL 시스템 개발)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.;Han, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.116-119
    • /
    • 2005
  • In this paper, we propose the PLL system of the local oscillator system for the millimeter wave band's radio astronomy receiving system. The development of the proposed local oscillator system based on the YIG oscillator VCO with 26.5 ${\sim}$ 40GHz specification. This system consists of the oscillator part including the YIG VCO, the harmonic mixer, and the isolator, the RF processing part including the triplexer, limiter, and RF discrimination processor. and the PLL system including YIG modulator and controller. Based on this configuration. we verify the frequency and power stability of the developed local oscillator system according to some temperature variation. From this test results we confirm the stable output frequency and power characteristic performance of the developed La system at constant temperature.

  • PDF

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.

Development of the fast setting PLL for MB-OFDM UWB system (MB-OFDM UWB System용 Fast Setting PLL 개발)

  • Lee, Young-Jae;Hyun, Seok-Bong;Tak, Geum-Young;Kim, Cheon-Soo;Yu, Hyun-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.607-608
    • /
    • 2006
  • A CMOS phase-locked loop (PLL) which synthesizes frequencies between $6.336{\sim}8.976GHz$ in steps of 528MHz and settles in approximately 150ns using the 528MHz reference clock is presented. Frequency hopping between the bands in the each mode is critical point to design the PLL in multi-band orthogonal frequency division multiplexing (OFDM) because frequency switching between each band is less than 9.5ns. To achieve the fast loop settling, integer-N PLL that operates with the high reference frequency to meet the settling requirement is implemented. Two PLLs that operate at 9GHz and 528MHz is integrated and shows the band hopping lower than 1ns.

  • PDF

Design and Fabrication of a Offset-PLL with DAC (DAC를 이용한 Offset-PLL 설계 및 제작)

  • Lim, Ju-Hyun;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.258-264
    • /
    • 2011
  • In this paper, we designed a frequency synthesizer with a low phase noise and fast lock time and excellent spurious characteristics using the offset-PLL(Phase Locked Loop) that is used in GSM(Global System for Mobile communications). The proposed frequency synthesizer has low phase noise using three times down conversion and third offset frequency of this synthesizer is created by DDS(Direct Digital Synthesizer) to have high frequency resolution. Also, this synthesizer has fast switching speed using DAC(Digital to Analog Converter). but phase noise degraded due to DAC. we improved performance using the DAC noise filter.

Design and Fabrication of YTO Module for Wideband Frequency Synthesizer (광대역 주파수 합성기용 YTO 모듈 설계 및 제작)

  • Chae, Myeong-Ho;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1280-1287
    • /
    • 2012
  • The 3.2~6.5 GHz wideband YTO(YIG Tuned Oscillator) module is designed, fabricated and measured. To improve the phase noise characteristic of the YTO module, offset PLL(Phase Locked Loop) structure with sampling mixer is applied. This YTO module is composed of sampling mixer, phase detector, loop filter, current driver, and YTO. The phase noise of the fabricated YTO module is measured as -100 dBc/Hz at 10 kHz offset frequency, which approximates the predicted result at the center frequency of 4.5 GHz. This YTO module presents over 10 dB improved phase noise compared to conventional PLL module from operating frequency.

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.