• 제목/요약/키워드: Plenum velocity

검색결과 32건 처리시간 0.024초

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향 (The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

모형 가스터빈 연소기의 기초 연소특성에 대한 실험적 연구 (An Experimental Study of Combustion Characteristics in a Model Gas Turbine Combustor)

  • 이장수;김민기;박성순;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2009
  • 본 연구는 GE 7FA+e DLN 2.6 가스터빈 연소기를 축소 제작한 모형 가스터빈 연소기의 연소 동특성 및 연소불안정 현상을 알아보고 위해 진행되었다. 모형 연소기에 사용된 연료노즐은 1/3 크기로 상사하여 제작되었으며, 실제 연료노즐과 동일한 2단 스월러(swirl vane)를 가지고 있다. Plenum과 연소기의 형상은 실 가스터빈과 유사한 음향학적 특성을 가질수 있도록 설계되었다. 실험은 공기온도 $200{\sim}400^{\circ}C$, 대기압, 노즐출구 속도 $30{\sim}75\;m/s$, 당량비 $0.4{\sim}1.2$, 연소실 길이 $375{\sim}700\;mm$,에서 이루어졌으며, 그 결과 소염영역 근처의 저 당량비 영역과 당량비 1.1 이상인 연료 과농 상태에서 연소 불안정 현상이 관찰 되었다.

  • PDF

Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor

  • Sun, Lin;Peng, Minjun;Xia, Genglei;Lv, Xing;Li, Ren
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.71-81
    • /
    • 2017
  • When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

중소기업 도금공정에서의 6가 크롬 폭로에 관한 연구 (A Study on Worker Exposure to Hexavalent Chromium in Plating 0peration)

  • 정희경;백남원
    • 한국산업보건학회지
    • /
    • 제3권2호
    • /
    • pp.152-165
    • /
    • 1993
  • This study was performed at eleven small-sized plating factories located in Seoul, Incheon, Ansan, and Taejeon from July 21 to October 6, 1992. The major objectives of this study were to evaluate worker exposure to hexavalent chromium and local exhaust ventilation (L.E.V.) systems at the chromium plating operations. The most suitable L.E.V. systems for chromium plating tanks were designed as examples for recommendation to the industry. The results are summarized as follows. The range of chromium plating operations investigated included decorative, hard, and black chromium plating on several kinds of parts. Most of plating tanks were not equipped with proper control methods against emission of hexavalent chromium mists and workers were not wearing appropriate personal protectives. The ariborne hexavalent chromium concentrations showed an approximate lognormal distribution. The geometric means of both personal and area samples were within the Korean and ACGIH standards, $50{\mu}g/m^3$. However, in comparison with the NIOSH criterion, $1{\mu}g/m^3$, the geometric means of personal samples at two factories and the geometric means of area samples at two factories exceeded it. The geometric means of personal and area samples of high exposure groups (above the NIOSH criterion) were 7 and 27 times higher than those of low exposure groups (below the NIOSH criterion), respectively. The L.E.V. systems of high exposure groups were improperly designed, and the factory with the highest exposure level had no L.E.V. systems at all on chemical etching process. Whereas at factories of low exposure groups, mist control methods such as mist suppressants, tank cover, and/or auxillary L.E.V. systems were added to L.E.V systems. The evaluation of L.E.V. systems showed that there was no chromium plating operation satisfying the ACGIH criteria for capture velocity, slot velocity, and exhaust rate simultaneously. To increase performance of L.E.V. systems, it must be designed to minimize the impact of boundary layer separation. Push-pull ventilation hood and downward plenum ventilation hood were suggested for the Korean industry.

  • PDF

곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(I) -수직풍동(垂直風胴)의 설계(設計)에 관(關)한 실험적(實驗的) 연구(硏究)- (Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel-)

  • 이종호;조용진;김만수
    • Journal of Biosystems Engineering
    • /
    • 제14권4호
    • /
    • pp.272-281
    • /
    • 1989
  • It is desirable for the vertical wind tunnel which can build uniform air flow across the vertical duct to be used for the purpose of the investigation of the aerodynamic properties of grains. This study was conducted to examine how the air velocity profile in the vertical duct is influenced by the various alternations of the elements of the wind tunnel, and to prepare design guidance of the vertical wind tunnel which can be used for investigating aerodynamic properties of grains. In addition, several tests were conducted to locate the test section which can be applicable for determining the terminal velocity of grain. The following conclusions were obtained from the study: 1. The size and the location of the outlet of the plenum chamber should be determined such that the outlet air flow is less affected by the air flow and the back pressure by the side wall of the chamber. 2. The honeycomb was not helpful for attaining uniform air flow in case that the air flow profile at the bottom of the vertical duct is serverely different from the ideal one. 3. Even though considerable pressure drop was resulted from the screens installed within the vertical duct, the screens were helpful for attaining uniform air flow in the duct. 4. It is desirable for the test section to be located at the position that not only the air flow of the duct is not disturbed by the distorted back pressure in the plenum chamber, but also less boundary layer is developed.

  • PDF

반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로 (A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement)

  • 김진욱;정유진;유정근;손병현
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.985-992
    • /
    • 2011
  • 복합 후처리장치의 최적 모델 개발을 위해 반응기 내부 유동 특성 및 유량 분배 수준 등과 관련지어 3차원 전산유체역학(CFD)을 수행하였다. 백필터의 각 격실별로 유량 분배가 크게 차이가 발생해 반건식 반응기(SDR)에 편류현상이 발생할 것으로 예측되어 백필터에 균등한 유량 분배를 위한 구조 개선이 시급한 것으로 나타났다. 이를 위해, 장치에 3가지 수정.보완(플래넘 구조 개선, 풍도 오리피스 설치, 복수의 흡인 덕트 설치)이 이루어졌다. 이 중에서 플래넘 구조 개선, 풍도 오리피스 설치가 가장 합리적일 것으로 판단된다. 본 해석을 이용하여 수정 보완한 배가스복합 후처리장치는, 반건식 반응기와 백필터 처리부가 일체화되어 있어 장치가 콤팩트하고 설치면적이 적으며 운영 및 관리가 매우 편리할 것으로 판단된다.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • 제7권6호
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

전산유체역학을 이용한 반도체 제조공정의 PM 전용 후드 설계 연구 (Design of local exhaust ventilation for preventive maintenance in semiconductor fabrication industry using CFD)

  • 홍좌령;구재한;박창섭;최광민
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.208-216
    • /
    • 2019
  • Objective: The aim of this study is to control residual chemicals or by-products generated in chambers during preventive maintenance (PM) in the semiconductor manufacturing industry. We designed local exhaust ventilation using computational fluid dynamics (CFD). Methods: The air flow characteristics and capture efficiency between rectangular and slot hoods were compared numerically. The software Fluent 18.1 was used to estimate uniform velocity distribution and capture efficiency for contaminants. A metal from group 15 in the periodic table was released at the bottom of the chamber to simulate emissions. Results: The slot hood had a higher capture efficiency than a rectangular hood under the same conditions because the slot hood provided uniform air flow and higher face velocity. Also, there was no rotating swirl in the plenum for slot, that is why slot had better efficiency than rectangular even though they had similar face velocity. With less than 10 slots, the capture efficiencies for contaminants were nearly 95%. The optimum conditions for a hood to achieve high efficiency was 8 to 10 slots and a face velocity over 1 m/s. Conclusions: Well-designed ventilation systems must consider both efficiency and convenience. For this study, a slot hood that had high capture efficiency and no work disturbance was designed. This will contribute to protection of the worker's health in a PM area and other areas as well. Also, this study confirms the possibility of the application CFD in the semiconductor fabrication industry.