• Title/Summary/Keyword: Plaxis

Search Result 84, Processing Time 0.023 seconds

Numerical Analysis of the Consolidation Behavior of Soft Clay Subjected to Individual Vacuum Pressure (개별진공압밀공법을 적용한 연약점토 지반의 압밀거동 분석을 위한 수치해석적 사례연구)

  • Jung, Du Hwoe;Lee, Jeong Bhin;Lee, Jun Seuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.27-37
    • /
    • 2021
  • An individual vacuum consolidation system has gained a popularity for a ground improvement of soft clayey soil. Finite element anaylses have been performed to simulate the individual vacuum consolidation system using a Plaxis 2D. The modelling procedures of the vacuum consolidation system are presented with the results of an unit-cell analysis. In addition, a case study was carried out to assess the applicability of the Plaxis 2D for simulating the consolidation behavior of soft ground subjected to the individual vacuum pressure.

Experimental and numerical modeling of uplift behavior of rectangular plates in cohesionless soil

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.341-358
    • /
    • 2014
  • Uplift response of rectangular anchor plates has been investigated in physical model tests and numerical simulation using Plaxis. The behavior of rectangular plates during uplift test was studied by experimental data and finite element analyses in cohesionless soil. Validation of the analysis model was also carried out with 200 mm and 300 mm diameter of rectangular plates in sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 200 mm and 300 mm computed maximum displacements were excellent for rectangular anchor plates. Numerical analysis using rectangular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in dense and loose packing of cohesionless soil.

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

Ground Behavior Analysis of Excavation near High Rising Building and Field Observation Control (도심지 굴착에서 지반의 거동예측과 계측관리)

  • 기홍석;박근수;오재화;이문수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.401-406
    • /
    • 1998
  • This study aimed at the technique for the construction control in braced excavation works. Selecting a case of Kwangju subway works, field observational values were compared with prediction using Plaxis's. Maximum observational values relevant to both horizontal and vertical proved satisfactory in that they were within the criteria. Numerical results by used Plaxis were overestimated greater than observational values, which meant the prediction were safe tendency. .It must be emphasized that displacement measurement for neighboring important structures should be carried out in order to take countermeasure charge for construction methods, in case that the risk or failure was previewed.

  • PDF

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

Numerical Analysis of Belled Shaft Foundation in Thick Pusan Clays (대심도 부산점토에 적용된 종저말뚝(Belled Shaft foundation)의 수치해석 연구)

  • Rao, K.G.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.530-535
    • /
    • 2006
  • The Pusan clays are soft and thick deposits and in some places, they reach even up to 50-70m. So, the pile foundations are inevitable in almost all cases. But they are significantly expansive when the length of the pile reaches about 70m. In this study, a comprehensive parametric study has been carried out in order to reduce the pile length and number of piles required in turn the cost of the foundation for particular building. A belled shaft pile has been optimized for a typical soil profile using the PLAXIS (FEM code). These results have shown a new direction of the pile foundation in Pusan, Korea. The results including the variation of contact pressures at the bottom of the bell, optimization of the angle of the bell and height of the bell in terms of the diameter of the shaft. And also, the design curves have been generated so that they can be directly used for design of belled shaft foundations. However, the structural strength criterion is being checked in the concerned laboratory.

  • PDF

TAGUCHI OPTIMIZATION OF DISPLACEMENTS DURING THE DESIGN PHASE OF A CONSTRUCTION PROJECT

  • E.S. N. Telis;G. J. Besseris
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.721-728
    • /
    • 2007
  • The prediction of quality characteristics during the design phase of a construction project was fragmented, because no particular method exists. One of the most important key responses is the total displacements (horizontal and vertical). A brainstorming session produces the quality parameters i.e. the control factors which here are identified as: the steel joint, the pile's length, the excavation depth and angle, the distance between the piles, the anchor stretch and length to name just some of the most engaging in the design. The purpose of this study is to optimise these parameters to minimize the total displacements following a methodology based on Taguchi method. For this reason, a 2-level, L8 orthogonal array has been employed to organize the experimentation. Data is obtained from a real-life excavation project designed on the Plaxis v.8 CAE package. Taguchi analysis is performed in the statistical package Minitab.

  • PDF