• Title/Summary/Keyword: Platoon Stability

Search Result 13, Processing Time 0.019 seconds

Traffic Flow Management under Ubiquitous Transportation System Environments (유비쿼터스 교통 환경하에서 교통류 관리구상)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • It is crucial in traffic flow management to maintain productivity and the traffic stability at the same time especially under congested traffic conditions. This issue has not been explicitly addressed under the intelligent transportation system environments. However, the ubiquitous transportation system environments make it possible to collect the data for each vehicle's position and velocity and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communications. In this paper, a preventive traffic flow management scheme is proposed, in which the objective is to maintain traffic flow stability while the productivity of the system is not decreased. The management scheme is proposed based on Greenshield's model because it is simple and easy to handle. It is considered that further research should be performed to evaluate the various traffic flow models.

Preventive Congestion Management Algorithm for Ubiquitous Freeway System (유비쿼터스 교통환경을 위한 연속류 정체예방관리 알고리즘)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communication. It is necessary to develop a new traffic management paradigm to take advantage of the ubiquitous transportation system environments. This paper proposed a preventive congestion management algorithm for uninterrupted flow, whose goal is to minimize the incident potential and maximize the productivity by maintaining traffic flow stability. The algorithm includes the following steps: Processing the raw data to produce the 3-dimension speed/flow/density profile and to produce the platoon profile and the shock wave profile, Determining the traffic state and the flow stability based on the processed data, Deciding the desirable speed the according the traffic flow state, and finally Providing the desirable speed information. It remains as further work to perform field experiments and calibrate the algorithm parameters.

The Effect of Single-Entry Metering and Platoon Metering on Mainstream under the Same Metering Rate with Pre-timed Metering (정주기식 동일 미터링율 제어에서 차량진입방식에 따른 효과분석)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.29-37
    • /
    • 2010
  • Ramp metering control is the most representative strategy of uninterrupted flow control and management system. Ramp metering is to adjust vehicles entering an expressway in such a way that expressway mainline maintains flow stability by regulating ramp vehicles. The effect of two metering strategies, single-entry metering and platoon metering, on mainstream under the same metering rate with pre-timed metering are analyzed by micro-simulation. Platoon metering shows lower performance than single-entry metering under the same metering rate in terms of speed, density, and delay, causes earlier breakdown than single-entry metering. It indicates that the selection of metering type has critical importance as the flow of mainline is high.