• Title/Summary/Keyword: Platinum group metal

Search Result 40, Processing Time 0.021 seconds

A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD (침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구)

  • Kay, Kee-Sung;Chung, Chae-Heon;Kang, Dong-Wan;Kim, Byeong-Ok;Hwang, Ho-Gil;Ko, Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

Recovery of Pd(II), Pt(IV), and Rh(III) Using Polyelectrolytes

  • Lee, You-Sean;Lee, Hoosung;Chung, Koo-Soon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.561-568
    • /
    • 1995
  • Two methods, precipitation and ultrafiltration, were applied in order to recover platinum group metals(PGM) by complexing them with water-soluble polyelectrolytes, e.g., polyethyleneimine [PEl], poly(2-vinylpyridine) [2-PVP], poly (4-vinylpyridine) [4-PVP], and poly (styrene sulfonic acid) [PSSA]. In the precipitation method, the PGM-polyelectrolyte complex that was formed by mixing first with polybase, e.g.,4-PVP at pH 1 was precipitated by further mixing with polyacid, e.g., PSSA. However, the recovery of PGM obtained by this method was not quantitative(less than 70%). The "sandwiching" binding between the metal anions and two polyelectrolytes was examined by X-ray photoelectron spectroscopy(XPS). The XPS studies indicated that the PGM atom was bound with the acdic and basic polyelectrolyte via its oxygen and nitrogen atom, respectively. The recovery of PGM using polyelectrolyte was further studied by ultrafiltration methods as follows : The PGM ions, eomplexed at pH 1 with polyelectrolyte, allowed the applicntion of membrane filtration by virtue of the great differences in molecular weights between PGM and other low molecular weight species. By applying this method, Pd and Pt (ca. $10^{-4}M$) were selectively separated almost quantitatively from coexisting metal ions, e.g., $Cu^{2+}$ and $Ni^{2+}$. The EPR spectra and viscosity measurements indicated that these polyelectrlytes were not bound to $Cu^{2+}$ and $Ni^{2+}$ ions at this pH, which provided the basis for selective separation of PGM(Pd, Pt and Rh) from these coexisting ions.

  • PDF

The MO Study about Interaction of cis-Diamminedichloroplatinum (cis-DDP) Complexes with DNA base, 1-Methylcytosine, for Development of Anti-Tumor Drugs (항암성물질의 개발을 위한 cis-Diamminedichloroplatinum (cis-DDP) 류와 DNA base인 1-Methylcytosine의 Interaction에 관한 분자궤도함수론적 연구)

  • Kim, Ui Rak;Kim, Sang Hae;Edward A. Boudreaux
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.331-339
    • /
    • 1990
  • It has been studied that relations between electronic structure and anti-tumor activity by variation of amine group in cis-diamminedichloroplatinum (Ⅱ) complexes. We were also interested in these Pt (Ⅱ) complexes interaction with 1-methylcytosine of DNA base and the electronic structure of these complexes in order to understand the mechanism of the metal-nucleobases interaction. The results showed that net charge of center metal in Pt complexes effect anti-tumor activity. The mechanisgm of the bonding between metal and ligands largely based on charge transfer from ligand to metal atom. Furthermore, the established molecular orbitals showed that metal 6p-orbitals played an important role in the bonding scheme for the interactions between platinum (Ⅱ) complexes and 1-methylcytosine. We also found that the stronger Pt-N3 bonding strength became, the better anti-tumor agents were.

  • PDF

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF WROUGHT WIRE CLASP (WROUGHT WIRE CLASP의 물리적 성질에 관한 실험적 연구)

  • Lee, Kwang-Hee;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.201-218
    • /
    • 1989
  • The purpose of this study was to evaluate the influence of attachment technique on mechanical properties and microstructures of wrought wires. The wires tested in this study were precious metal wires: PGP (Platinum-Gold -Palladium), Elastic #12, Denture Clasp, Standard, Jelenko No. 2, Degulor-Klammerdraht, DM (Dong Myung) and base metal wire : Ticonium. Each wire was divided into three groups, and each group was heat treated as embedding, cast to, and soldering state. Heat treated sample was evaluated by tensile test, bending test, microhardness test, element analysis and microstructure test. The obtained results were as follows: 1. In tensile test, cast to and soldering procedures have an effect on wrought wire clasp as hardening heat treatment. 2. Maximum bending strength was significantly increased in Elastic #12, Denture Clasp, Standard, and DM in cast to procedure. 3. Ticonium showed the highest Victors hardness number, followed by PGP, and there was no significant difference in other wrought wires. In cast to and soldering procedure, Victors hardness number was significantly increased in precious wrought wires. 4. The precious wrought wire showed typical fibrous structure and this was disappeared in cast to and soldering procedure. But physical properties were not influenced by this phenomenon.

  • PDF

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

Determination of Ultratraces of Rhodium by Adsorptive Stripping Voltammetry of Formaldehyde Complex

  • Hong Tae-Kee;Czae Myung-Zoon;Lee Chul;Kwon Young-Soon;Hong Mi-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1035-1037
    • /
    • 1994
  • An ultrasensitive and selective stripping voltammetric scheme for the determination of rhodium is described. By the use of combined accumulation and catalytic effects in formaldehyde-hydrochloric acid medium, substantial improvement in the limit of detection can be obtained. Optimal experimental conditions were found to be 0.42 M hydrochloric acid solution containing 0.008${\%}$ formaldehyde, an accumulation potential of -0.70 V (vs. Ag/AgCl) and an accumulation time of 20 s. The stripping mode was differential pulse voltammetry. In these conditions the limit of detection lies at 2 ${\times}$ l0$^{-12}$ M (0.21 ppt). The relative standard deviation at 5 ${\times}$ l0$^{-11}$ M was 4.9${\%}$ (n=5). There were no serious interferences from other platinum group metal ions being the tolerable amounts more than 500 times that of rhodium.

Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화)

  • Jang, Myeong Je;Won, Mi So;Lee, Kyu Hwan;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

Development of Separation and Trace Analysis Methods for Platinum Group Elements-Separation and Retention Behavior of Platinoid Metal Acetylacetonates in Reversed-Phase Liquid Chromatography (백금족 원소의 분리 및 미량분석법 개발에 관한 연구: 역상 액체 크로마토그래피에 의한 백금족 금속-아세틸아세톤 킬레이트들의 분리 및 머무름 거동)

  • Lee, Dai Woon;Kim, Kyung Soo;Park, Young Hun;Czea, Myoung Zoon;Chung, Koo Soon
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.107-119
    • /
    • 1993
  • The purpose of this study is to investigated the elution behavior of platinoid metal acetylacetonates, which is the key to elucidate their retention mechanism and optimize their RPLC separation conditions. The retention data of four platinoid metal acetylacetonates have been measured on four different columns in methanol-water and acetonitrile-water systems. The retention of uncharged platinoid metal acetylacetonates is interpreted by solvophobic effect. The retention of platinoid metal acetylacetonates is also greatly influenced by the geometric structure of the complexes. The square planar chelates, $Pd(acac)_2$, $Pt(acac)_2$, are retained longer than the octahedral chelates, $Rh(acac)_3$, $Ir(acac)_3$. It is likely due to that square planar chelates show greater interaction with nonpolar stationary phase than octahedral chelates. The results of van't Hoff plots have shown that platinoid metal acetylacetonates is operated on the same retention mechanism in the temperature range of $25{\sim}45^{\circ}C$. The study of the retention mechanism by the enthalpy-entropy compensation phenomenon has indicated that the retention mechanism of octahedral chelates and square planar chelates do not vary with the composition change of methanol-water mobile phase, respectively. In acetonitrile-water mobile phase, however, the retention mechanism is observed to be more complicated. Optimum condition for the separation of four platinoid metal acetylacetonates is found to be 40% methanol, polymeric C18 column, and $45^{\circ}C$.

  • PDF

Titanium Ions Released from Oral Casting Alloys May Contribute to the Symptom of Burning Mouth Syndrome

  • Park, Yang Mi;Kim, Kyung-Hee;Lee, Sunhee;Jeon, Hye-Mi;Heo, Jun-Young;Ahn, Yong-Woo;Ok, Soo-Min;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.4
    • /
    • pp.102-108
    • /
    • 2017
  • Purpose: Many metal ions released from dental casting alloys have been reported to influence the intraoral symptoms of oral lichen planus (OLP) and burning mouth syndrome (BMS). The aim of this study was to investigate the relationship between salivary metal ion levels and the prosthetic duration as well as to evaluate the time-dependent morbid effects of metal ions in OLP and BMS patients. Methods: Three study groups consist of the following subjects respectively: 17 OLP patients, 12 BMS patients, and 12 patients without oral symptoms. The salivary concentrations of 13 metal ions (copper, cobalt, zinc, chromium, nickel, aluminum, silver, iron, titanium [Ti], platinum, tin, palladium, and gold) were measured by Laser Ablation Microprobe Inductively coupled Plasma Mass Spectrometry. Results: The Ti ions had statistically significant differences among the groups with a prosthetic duration of less than 5 years. There were no significant differences between all ion levels among the groups wearing dental cast alloys for over 5 years. In the BMS group, the level of Ti ions in patients with prosthetic restorations less than 5 years old were significantly high (p<0.05). Conclusions: In the BMS group, 3-60 months during which salivary Ti levels were higher were matched with the duration of burning symptoms ($15.6{\pm}17.1months$). Furthermore, Ti ions were statistically high in the oral cavity of BMS patients fitted with dental casting alloys for 5 years. These results suggest that Ti ions released from dental implants and oral prostheses could attribute to burning sensation of BMS.

Multi-Nuclear NMR Investigation of Nickel(II), Palladium(II), Platinum(II) and Ruthenium(II) Complexes of an Asymmetrical Ditertiary Phosphine

  • Raj, Joe Gerald Jesu;Pathak, Devendra Deo;Kapoor, Pramesh N.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.726-730
    • /
    • 2013
  • Complexes synthesized by reacting alkyl and aryl phosphines with different transition metals are of great interest due to their catalytic properties. Many of the phosphine complexes are soluble in polar solvents as a result they find applications in homogeneous catalysis. In our present work we report, four transition metal complexes of Ni(II), Pd(II), Pt(II) and Ru(II) with an asymmetrical ditertiaryphosphine ligand. The synthesized ligand bears a less electronegative substituent such as methyl group on the aromatic nucleus hence makes it a strong ${\sigma}$-donor to form stable complexes and thus could effectively used in catalytic reactions. The complexes have been completely characterized by elemental analyses, FTIR, $^1HNMR$, $^{31}PNMR$ and FAB Mass Spectrometry methods. Based on the spectroscopic evidences it has been confirmed that Ni(II), Pd(II) and Pt(II) complexes with the ditertiaryphosphine ligand showed cis whereas the Ru(II) complex showed trans geometry in their molecular structure.