• Title/Summary/Keyword: Platinum Dispersion

Search Result 31, Processing Time 0.029 seconds

Preparation of $Pt/TiO_2/Nafion$ Electrolyte Membrane for Self-humidifying membrane of PEMFC (연료전지의 자가 가습 $Pt/TiO_2/Nafion$ 전해질막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Ju, Min-Cheol;Kim, Hwang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The $Pt/TiO_2 catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$ The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. $TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then $Pt/TiO_2/Nafion$composite membrane was prepared using solution-cast method. The size, dispersion and content of the platinum had been characterized with Transmission Electron Micrograph (TEM), X-ray diffract ion (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The cell performance with the self-humidifying composite membrane was compared with a recast Nafion membrane under both humidified and dry conditions at 65 $^{\circ}C$.

  • PDF

Fabrication of Oxygen Sensitive Particles and Characteristic Analysis (산소감응성 입자 제조 및 특성 분석 연구)

  • Jeong, Won-Taek;Yi, Seung-Jae;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.41-46
    • /
    • 2011
  • Oxygen sensitive functional particles(OSParticle) were fabricated by three different methods for using the particles as oxygen sensors and PIV tracers. The used methods were a physical coating method, an ion-exchange method and a dispersion polymerization method. The physical coating method is dipping $SiO_2$ hollow particles into dye solution then drying. This method is very simple, but particles are not uniform in diameter and luminescence. The particles fabricated by the ion-exchange method have very uniform diameter and well doped. However, it can not be used in water since the particles are hydrophobic. In case of the dispersion polymerization method, the diameter of OSParticles is quite uniform. The diameter of OSParticles can be changed by controlling the quantity of AIBN (2,2'-azobis isobutyronitrile). For the purpose of dissolved oxygen concentration measurement in micro scale water flows, the dispersion polymerized OSParticles turn out to be the most superior functional particles. The luminescent intensity of OSParticles was tested with the variation of dissolved oxygen concentration in water samples. As a result, the luminescent intensity of OSParticles is monotonically decreased with increasing DO (Dissolved oxygen) concentration of water.

Hydrophobic Catalyst Mixture for the Isotopic Exchange Reaction between Hydrogen and Water

  • Paek S.;Ahn D.H.;Choi H.J.;Kim K.R.;LEE M.;YIM S.P.;CHUNG H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.141-148
    • /
    • 2005
  • Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  • PDF

Carbon-13 Nuclear Magnetic Resonance Spectroscopic Studies of $^{13}CO$ Adsorbed on Platinum Particles in L-Zeolites

  • 한옥희;Gustavo Larsen;Gary L. Haller;Kurt W. Zilm
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.934-942
    • /
    • 1998
  • $^13CO$ chemisorbed on platinum particles in L-zeolite has been investigated by static and magic angle spinning NMR spectroscopy. The representative spectra are composed of a broad asymmetric peak with a center of gravity at 230±30 ppm and a sharp symmetric peak at 124±2 ppm which is tentatively assigned to physisorbed $CO_2$, on inner walls of L-zeolite. Overall, the broad resonance component is similar to our previous results of highly dispersed (80-96%) CO/Pt/silica or CO/Pt/alumina samples, still showing metallic characters. The principal difference is in the first moment value. The broad peak in the spectra is assigned to CO linearly bound to Pt particles in the L-zeolites, and indicates a distribution of isotropic shifts from bonding site to bonding site. The NMR results reported here manifest that the Pt particles inside of the L-zeolites channels are not collectively the same with the ones supported on silica or alumina with similar dispersion in terms of Pt particle shape and/or ordering of Pt atoms in a particle. As a result, Pt particles of CO/Pt/L-zeolite were agglomerated accompanying CO desorption upon annealing. There were no definite changes in the NMR spectra due to differences of exchanged cations. Comparison of our observation on CO/Pt/L-zeolite with Sharma et al.'s reveals that even when the first moment, the linewidtb, and the relaxation times of the static spectra and the dispersion measured by chemisorption are similar, the properties of Pt particles can be dramatically different. Therefore, it is essential to take advantage of the strengths of several techniques together in order to interpret data reliably, especially for the highly dispersed samples.

Effect of Support in HI Decomposition Reaction using Pt Catalyst (Pt 촉매를 이용한 HI분해반응에서 지지체에 따른 영향)

  • Ko, Yun-Ki;Park, Chu-Sik;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.415-423
    • /
    • 2011
  • HI decomposition step certainly demand catalytic reaction for efficient production of hydrogen in SI process. Platinum catalyst can apply to HI decomposition reaction as well as hydrogenation or dehydrogenation. Generally, noble metal is used as catalyst which is loaded form for getting high dispersion and wide active area. In this study, Pt was loaded onto zirconia, ceria, alumina, and silica by impregnation method. HI decomposition reaction was carried out under the condition of $450^{\circ}C$, 1atm, and $167.76h^{-1}$ (WHSV) in a fixed bed reactor for measuring catalytic activity. And property of a catalyst was observed by BET, TEM, XRD and chemisoption analysis. On the basis of experimental results, we discussed about conversion of HI according to physical properties of the loaded Pt catalyst onto each support.

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Study of the Dehydrogenation Characteristics of Pt-Sn Catalysts by Propane Pulse Injection (프로판 펄스 주입에 의한 백금주석촉매의 탈수소반응 특성 연구)

  • Koh, Hyoung Lim;Jung, Jae-Won;Choi, Yi-Sun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.575-583
    • /
    • 2019
  • The results of the catalytic reaction by pulsed injection of reactants are useful for studying the initial reaction characteristics in the case of many coke invloved reactions. The dehydrogenation characteristics of alumina supported platinum tin catalysts were investigated by pulsed injection of propane. The yield of propylene was maximized when the reduction time of propane injection catalyst was $550^{\circ}C$. Raman analysis showed that the amount of coke was very small when PtSn (4.5) catalyst was used and the short contact time was simulated by propane pulse injection. n order to differentiate the degree of dispersion of platinum, PtSn (4.5) catalyst was sintered at $900^{\circ}C$ with hydrogen, and then the temperature of air - redispersion was varied and propane pulse was injected. As a result, conversione and yield were the highest when air-redispersion temperature is $600^{\circ}C$. The lower the air-redispersion temperature, the higher the selectivity. As the tin content in the platinum catalyst increased, the propane conversion was lowered, but the selectivity to propylene increased and the yield increased. From this, it can be seen that the tin-added platinum catalyst is less active than the platinum catalyst from the beginning of the reaction, which is less affected by coke. The dehydrogenation reaction by the propane pulse injection shows a higher conversion rate than the result of continuous injection due to the formation of COx, and the amount of coke is very small. Decrease in selectivity due to the formation of COx can be reduced by increasing the reduction temperature and time.

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

A Study of Pt-Mg/Mesoporous Aluminosilicate Catalysts for Synthesis of Jet-fuel from n-Octadecane (n-Octadecane 으로부터 항공유 제조를 위한 Pt-Mg/mesoporous aluminosilicate 촉매 연구)

  • Jung, Euna;Kim, Chul-Ung;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.712-718
    • /
    • 2016
  • Platinum catalysts supported on the mesoporous material synthesized from Y zeolite were applied to synthesis of jet-fuel through n-octadecane hydroupgrading. The mesoporous aluminosolicate, $MMZ_{HY}$ was synthesized using Y zeolite as its framework source. The effect of the addition of Mg to $Pt/MMZ_{HY}$ catalyst for n-octadecane hydroupgrading was investigated. Catalyst characterization was performed with X-ray diffraction, $N_2$ adsorption, temperature-programmed reduction in hydrogen flow, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The high yield of jet-fuel over the $PtMg(2.0)/MMZ_{HY}$ can be attributed not only to the higher dispersion of Pt metal and higher reducibility, but also the higher amount of acid sites and higher strength of acid sites. The selectivity to iso-paraffin in the jet-fuel fraction could be reached above 80% over the optimized $PtMg/MMZ_{HY}$ catalyst.