• Title/Summary/Keyword: Platinium electrode

Search Result 2, Processing Time 0.014 seconds

Electrochemical degradation of Orange G in K2SO4 and KCl medium

  • Hamous, Hanene;Khenifi, Aicha;Bouberka, Zohra;Derriche, Zoubir
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.571-578
    • /
    • 2020
  • In this work, a detailed study on the electrochemical degradation of an azo dye, Orange G is performed using a platinum electrode. Indeed, the influence of the dye concentration (50-150 mg/L), the pH of the medium and the density of the electric current is studied on the rate of discoloration, the rate of mineralization, the efficiency of the electric current and the energy consumption. The UV-visible spectra of OG plotted against the degradation time show the decrease of the intensity of the characteristic dye peaks. In an environment rich in chlorides, all peaks disappear after 15 min of degradation. However, the peaks at wavelengths of 200 and 290 nm appeared after one hour of treatment. In K2SO4, the eliminated percentages are respectively 46, 54 and 61% for wavelengths of 245, 330 and 480 nm. This suggests that the degradation mechanisms in K2SO4 and KCl environments are not the same. In the middle rich in chlorides, the eliminated percentage of OG did not seem to be affected by the concentrations increase. These results confirm the hypothesis that electrochemical oxidation process is very favorable for concentrated pollutants discharge.

Electrochemical Impedance Spectroscopy Analysis on the Dye-sensitized Solar Cell with Different $TiO_2$ thicknesses ($TiO_2$ 두께에 따른 염료감응형 태양전지의 전기화학적 임피던스 분석)

  • Kim, Hee-Je;Lee, Jeong-Gee;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Jin-Kyoung;Prabalkar, K.;Shin, In-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2425-2430
    • /
    • 2009
  • Dye-sensitized solar cell(DSC) is composed of a dye-adsorbed nanoporous $TiO_2$ layer on fluorine-doped tin oxide(FTO) glass substrate, electrolyte, and platinium doped counter electrode. Among these, a dye-absorbed nanoporous $TiO_2$ layer plays an important role in the performance of the DSC because the injected electrons from excited dye molecules move through this layer. And the condition of $TiO_2$ layer such as the morphology and thickness affects on the electron movement. Therefore, the performances and the efficiency of DSC change as the thickness of $TiO_2$ layer is different. Electrochemical Impedance Spectroscopy(EIS) is the powerful analysis method to study the kinetics of electrochemical and photoelectrochemical processes occurring in the DSC especially the injected electron movements. So we analyzed the DSCs with different $TiO_2$ thicknesses by using EIS to understand the influence of the $TiO_2$ thickness to the performance of the DSC clearly. Finally, we got the EIS analysis on the DSC with different $TiO_2$ thickness from the internal resistance of the DSC, the electron life time and the amount of dye molecules.