• Title/Summary/Keyword: Platform Scaling

Search Result 29, Processing Time 0.018 seconds

Comparison of the estimated breeding value and accuracy by imputation reference Beadchip platform and scaling factor of the genomic relationship matrix in Hanwoo cattle

  • Soo Hyun, Lee;Chang Gwon, Dang;Mina, Park;Seung Soo, Lee;Young Chang, Lee;Jae Gu, Lee;Hyuk Kee, Chang;Ho Baek, Yoon;Chung-il, Cho;Sang Hong, Lee;Tae Jeong, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.431-440
    • /
    • 2022
  • Hanwoo cattle are a unique and historical breed in Korea that have been genetically improved and maintained by the national evaluation and selection system. The aim of this study was to provide information that can help improve the accuracy of the estimated breeding values in Hanwoo cattle by showing the difference between the imputation reference chip platforms of genomic data and the scaling factor of the genetic relationship matrix (GRM). In this study, nine sets of data were compared that consisted of 3 reference platforms each with 3 different scaling factors (-0.5, 0 and 0.5). The evaluation was performed using MTG2.0 with nine different GRMs for the same number of genotyped animals, pedigree, and phenotype data. A five multi-trait model was used for the evaluation in this study which is the same model used in the national evaluation system. Our results show that the Hanwoo custom v1 platform is the best option for all traits, providing a mean accuracy improvement by 0.1 - 0.3%. In the case of the scaling factor, regardless of the imputation chip platform, a setting of -1 resulted in a better accuracy increased by 0.5 to 1.6% compared to the other scaling factors. In conclusion, this study revealed that Hanwoo custom v1 used as the imputation reference chip platform and a scaling factor of -0.5 can improve the accuracy of the estimated breeding value in the Hanwoo population. This information could help to improve the current evaluation system.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

A Study on NaverZ's Metaverse Platform Scaling Strategy

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.132-141
    • /
    • 2022
  • We look at the rocket life stages of NaverZ's metaverse platform scaling and investigate the ignition and scale-up stage of its metaverse platform brand, Zepeto based on the Rocket Model (RM). The results are derived as follows: Firstly, NaverZ shows the event strategy by collaborating with K-pops, the piggybacking strategy by utilizing other SNSs, and the VIP strategy by investing in game and entertainment content genres in the 'attract' function. In the second 'match' function, based on the matching rule of Zepeto, the users can generate their own characters and "World" with Zepeto Studio. However, for strengthening the matching quality, NaverZ is investing in the artificial intelligence (AI) based companies consistently. In the 'connect' function, NaverZ's maximization of the positive interaction is possible by inducing feed activities in Zepeto & other SNSs and by uploading attractive content for viral effects in the ignition. For facilitating this, NaverZ expands the scale to other continents like Southeast Asia and Middle East with the localization strategy inclusive investment. Lastly, in the 'transact' function, based on three monetization experiments like Coin & ZEM, user generated content (UGC) fee, and advertising revenue in the ignition, NaverZ starts to invest in NFT platforms and abroad blockchain companies.

A study on live vertical scale-up in a cloud environment (클라우드 환경에서의 무중단 수직 확장에 관한 연구)

  • Jun-Seok Park;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.70-81
    • /
    • 2022
  • In this paper, we proposed a Virtual Machine Placement (VMP) method to provide live vertical scaling services for cloud resources. Since free space on the physical server must be secured in advance for vertical scaling, a "general-mixed-vertical" mode conversion algorithm based on the FirstFit placement strategy that variably adjusts the allocation ratio of virtual servers to physical servers for this purpose is presented. Simulations were performed using parameters such as vertical scaling ratio, virtualization ratio, and free resource ratio. When the vertical scaling ratio is 50%, considering free space, 150% of resources are required as a whole, but simulation results of the proposed algorithm show that only up to 125% of free space is required.

Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System (스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석)

  • Kim Jung-Yup;Kim Kwang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

A Power-adjustable Fully-integrated CMOS Optical Receiver for Multi-rate Applications

  • Park, Kangyeob;Yoon, Eun-Jung;Oh, Won-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-627
    • /
    • 2016
  • A power-adjustable fully-integrated CMOS optical receiver with multi-rate clock-and-data recovery circuit is presented in standard 65-nm CMOS technology. With supply voltage scaling, key features of the optical receiver such as bandwidth, power efficiency, and optical sensitivity can be automatically optimized according to the bit rates. The prototype receiver has −23.7 dBm to −15.4 dBm of optical sensitivity for 10−9 bit error rate with constant conversion gain around all target bit rates from 1.62Gbps to 8.1 Gbps. Power efficiency is less than 9.3 pJ/bit over all operating ranges.

Analysis of Trends in Hyper-connected Virtual Infrastructure Management Technology (초연결 가상 인프라 관리 기술 동향 분석)

  • Shim, J.C.;Park, P.K.;Ryu, H.Y.;Kim, T.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.135-148
    • /
    • 2020
  • Virtualisation in cloud computing is vital for maintaining maximum resource utilization and easy access to operation and storage management of components. Platform virtualisation technology has the potential to be easily implemented with the support of scalability and security, which are the most important components for cloud-based services. Virtual resources must be allocated to a centralized pool called the cloud, and it is considered as cloud computing only when the virtual resources are orchestrated through management and automation software. Therefore, research and development on the latest technology for such a virtualisation platform provides both academia and industry the scope to deploy the fastest and most reliable technology in limited hardware resource. In this research, we reviewed and compared the popular current technologies for network and service management and automation technology.

Reliability Prediction of High Performance Mooring Platform in Development Stage Using Safety Integrity Level and MTTFd (안전무결성 수준 및 MTTFd를 활용한 개발단계의 고성능 지상체 신뢰도 예측 방안)

  • Min-Young Lee;Sang-Boo Kim;In-Hwa Bae;So-Yeon Kang;Woo-Yeong Kwak;Sung-Gun Lee;Keuk-Ki Oh;Dae-Rim Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.609-618
    • /
    • 2024
  • System reliability prediction in the development stage is increasingly crucial to reliability growth management to satisfy its target reliability, since modern system usually takes a form of complex composition and various complicated functions. In most cases of development stage, however, the information available for system reliability prediction is very limited, making it difficult to predict system reliability more precisely as in the production and operating stages. In this study, a system reliability prediction process is considered when the reliability-related information such as SIL (Safety Integrity Level) and MTTFd (Mean Time to Dangerous Failure) is available in the development stage. It is suggested that when the SIL or MTTFd of a system component is known and the field operational data of similar system is given, the reliability prediction could be performed using the scaling factor for the SIL or MTTFd value of the component based on the similar system's field operational data analysis. Predicting a system reliability is then adjusted with the conversion factor reflecting the temperature condition of the environment in which the system actually operates. Finally, the case of applying the proposed system reliability prediction process to a high performance mooring platform is dealt with.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.

Service Scheduling in Cloud Computing based on Queuing Game Model

  • Lin, Fuhong;Zhou, Xianwei;Huang, Daochao;Song, Wei;Han, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1554-1566
    • /
    • 2014
  • Cloud Computing allows application providers seamlessly scaling their services and enables users scaling their usage according to their needs. In this paper, using queuing game model, we present service scheduling schemes which are used in software as a service (SaaS). The object is maximizing the Cloud Computing platform's (CCP's) payoff via controlling the service requests whether to join or balk, and controlling the value of CCP's admission fee. Firstly, we treat the CCP as one virtual machine (VM) and analyze the optimal queue length with a fixed admission fee distribution. If the position number of a new service request is bigger than the optimal queue length, it balks. Otherwise, it joins in. Under this scheme, the CCP's payoff can be maximized. Secondly, we extend this achievement to the multiple VMs situation. A big difference between single VM and multiple VMs is that the latter one needs to decide which VM the service requests turn to for service. We use a corresponding algorithm solve it. Simulation results demonstrate the good performance of our schemes.