• Title/Summary/Keyword: Platelet activation

Search Result 151, Processing Time 0.028 seconds

Euchrestaflavanone A can attenuate thrombosis through inhibition of collagen-induced platelet activation

  • Shin, Jung-Hae;Kwon, Hyuk-Woo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Euchrestaflavanone A (EFA) is a flavonoid found in the root bark of Cudrania tricuspidata. C. tricuspidata extract, widely used throughout Asia in traditional medicine, has been investigated phytochemically and biologically and is known to have anti-obesity, anti-inflammatory, and anti-tumor effects. It has been reported that C. tricuspidata extract also possesses anti-platelet effects; however, the mechanism of its anti-platelet and anti-thrombotic activities is yet to be elucidated. In this study, we investigated the effects of EFA on the modulation of platelet function using collagen-induced human platelets. Our results showed that EFA markedly inhibited platelet aggregation. Furthermore, it downregulated glycoprotein IIb/IIIa (αIIb/β3)-mediated signaling events, including platelet adhesion, granule secretion, thromboxane A2 production, and clot retraction, but upregulated the cyclic adenosine monophosphate-dependent pathway. Taken together, EFA possesses strong anti-platelet and anti-thrombotic properties and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Inhibitory effects of artemether on collagen-induced platelet aggregation via regulation of phosphoprotein inducing PI3K/Akt and MAPK

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.167-172
    • /
    • 2022
  • Pathophysiological reaction of platelets in the blood vessel is an indispensable part of thrombosis and cardiovascular disease, which is the most common cause of death in the world. In this study, we performed in vitro assays to evaluate antiplatelet activity of artemether in human platelets and attempted to identify the mechanism responsible for protein phosphorylation. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artemether was clarified. Artemether inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artemether decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artemether strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 157.92 μM. These results suggest that artemether has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Artesunate inhibits collagen-induced human platelets aggregation through regulation of PI3K/Akt and MAPK pathway (PI3K/Akt 및 MAPK 기전 조절을 통한 Artesunate의 콜라겐 유도의 사람 혈소판 응집 억제효과)

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.57-62
    • /
    • 2022
  • Excessive activation and aggregation of platelets is a major cause of cardiovascular disease. Therefore, inhibition of platelet activation and aggregation is considered an attractive therapeutic target in preventing and treating cardiovascular diseases. In particular, strong platelet activation and aggregation by collagen secreted from the vascular endothelium are characteristic of vascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia species, and has been reported to be effective in anticancer and Alzheimer's disease fields. However, the effect and mechanism of artesunate on collagen-induced platelet activation and aggregation have not been elucidated. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artesunate was clarified. Artesunate inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artesunate decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artesunate strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 106.41 µM. These results suggest that artesunate has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Inhibitory effects of artemether on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets (콜라겐-유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Artemether의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Although normal activation of platelets is important in the process of hemostasis, excessive or abnormal activation of platelets can lead to cardiovascular diseases. Therefore, the discovery of novel substances capable of regulating or inhibiting platelet activation may be helpful in the prevention and treatment of cardiovascular diseases. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. This study investigated the effects of artemether on platelet activation and thrombus formation induced by collagen. As a result, cAMP level was significantly increased by artemether, and VASP and IP3R, substrates of cAMP-dependent kinase, were phosphorylated. IP3R phosphorylation by Artemether inhibited Ca2+ recruitment into the cytoplasm, and phosphorylated VASP inhibited fibrinogen binding by inactivating αIIb/β3 located on the platelet membrane. Consequently, artemether inhibited thrombin-induced fibrin clot formation. Therefore, we propose that artemether can act as an effective prophylactic and therapeutic agent for cardiovascular diseases caused by excessive platelet activation and thrombus formation.

Anti-thrombotic activity of fermented rice bran extract with several oriental plants in vitro and in vivo (쌀겨발효추출물의 항혈전효과)

  • Jeon, Bo-Ra;Ji, Hyun Dong;Kim, Su Jung;Lee, Chun-Hee;Kim, Tae-Wan;Rhee, Man-Hee
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.233-240
    • /
    • 2015
  • Although the effects of the rice bran have recently been investigated, there is no information regarding platelet physiology available. However, it is well known that fermented natural plants have a beneficial effect on cardiovascular diseases. Therefore, this study was conducted to investigate whether fermented rice bran extract (FRBE) with several plants (Artemisia princeps, Angelica Gigantis Radix, Cnidium officinale, and Camellia sinensis) affected agonist-induced platelet aggregation, and if so, what the underlying mechanism of its activity was. We performed several experiments, including in vitro platelet aggregation, intracellular calcium concentration and adenosine triphosphate release. In addition, the activation of integrin ${\alpha}_{II}b{\beta}3$ was determined using fibrinogen binding. Thrombus formation was also evaluated in vivo using an arterio-venous shunt model. The FRBE inhibited collagen-induced platelet aggregation in a concentration-dependent manner. FRBE significantly and dose dependently attenuated thrombus formation using rat arterio-venous shunt. FRBE suppressed the intracellular calcium mobilization in collagen-stimulated platelets. We also found that FRBE inhibited extracellular stimuli-responsive kinase 1/2, p38-mitogen-activated protein kinases and c-Jun N-terminal kinase phosphorylation. These results suggested that FRBE inhibited collagen-induced platelet aggregation, which was mediated by modulation of downstream signaling molecules. In conclusion, FRBE could be developed as a functional food against aberrant platelet activation-related cardiovascular diseases.

The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

  • Son, Young-Min;Jeong, Da-Hye;Park, Hwa-Jin;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.96-102
    • /
    • 2017
  • Background: Korean ginseng, Panax ginseng Meyer, has been used as a traditional oriental medicine to treat illness and promote health for several thousand years. Ginsenosides are the main constituents for the pharmacological effects of P. ginseng. Since several ginsenosides, including ginsenoside (G)-Rg3 and G-Rp1, have reported antiplatelet activity, here we investigate the ability of G-Rp4 to modulate adenosine diphosphate (ADP)-induced platelet aggregation. The ginsenoside Rp4, a similar chemical structure of G-Rp1, was prepared from G-Rg1 by chemical modification. Methods: To examine the effects of G-Rp4 on platelet activation, we performed several experiments, including antiplatelet ability, the modulation of intracellular calcium concentration, and P-selectin expression. In addition, we examined the activation of integrin ${\alpha}IIb{\beta}_3$ and the phosphorylation of signaling molecules using fibrinogen binding assay and immunoblotting in rat washed platelets. Results: G-Rp4 inhibited ADP-induced platelet aggregation in a dose-dependent manner. We found that G-Rp4 decreased calcium mobilization and P-selectin expression in ADP-activated platelets. Moreover, fibrinogen binding to integrin ${\alpha}IIb{\beta}_3$ by ADP was attenuated in G-Rp4-treated platelets. G-Rp4 significantly attenuated phosphorylation of extracellular signal-regulated protein kinases 1 and 2, p38, and c-Jun N-terminal kinase, as well as protein kinase B, phosphatidylinositol 3-kinase, and phospholipase C-${\gamma}$ phosphorylations. Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

Review of Genetic Diagnostic Approaches for Glanzmann Thrombasthenia in Korea

  • Shim, Ye Jee
    • Journal of Interdisciplinary Genomics
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 2021
  • Inherited platelet function disorders (IPFDs) are a disease group of heterogeneous bleeding disorders associated with congenital defects of platelet functions. Normal platelets essential role for primary hemostasis by adhesion, activation, secretion of granules, aggregation, and procoagulant activity of platelets. The accurate diagnosis of IPFDs is challenging due to unavailability of important testing methods, including light transmission aggregometry and flow cytometry, in several medical centers in Korea. Among several IPFDs, Glanzmann thrombasthenia (GT) is a most representative IPFD and is relatively frequently found compare to the other types of rarer IPFDs. GT is an autosomal recessive disorder caused by mutations of ITGA2B or ITGB3. There are quantitative or qualitative defects of the GPIIb/IIIa complex in platelet, which is the binding receptor for fibrinogen, von Willbrand factor, and fibronectin in GT patients. Therefore, patients with GT have normal platelet count and normal platelet morphology, but they have severely decreased platelet aggregation. Thus, GT patients have a very severe hemorrhagic phenotypes that begins at a very early age and persists throughout life. In this article, the general contents about platelet functions and respective IPFDs, the overall contents of GT, and the current status of genetic diagnosis of GT in Korea will be reviewed.

Inhibition of $Na^+,\;K^+$$-ATPase, cyclicAMP Phonsphodiesterase and Platelet Activation by Secondary Metabolites from Marine Organisms (혈소판 및 $Na^+,\;K^+$$-ATPase, cyclicAMP 포스포디에스테라제에 대한 해양천연물질의 작용)

  • Park, Young-Hyun;Chang, Sung-Keun;Kim, In-Kyu;Seo, Young-Wan;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.345-351
    • /
    • 1997
  • The purpose of this investigation was to determine the inhibition of $Na^+,\;K^+$-ATPase, cyclicAMP phophodiesterase and platelet activation by secondary metabolites isolated from mar ine organisms. The secondary metabolites were isolated and identified as six diterpenoids(1 : astrogorgin, 2 : ophirin, 3 : calicophirin B, 4, 5 and 6 : cladiellin) from the dichloromethane extract of Muricellajsp., four ceramides(1,2,3, and 4) from Acabaria undulata and three antharaquinones(1,2 : crysophanol, and 3 : physcion) from Urechis unicintus. The results demonstrated that diterpenoids(2,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase, and ceramides(1,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase and thrombin(0.1 units/ml)-induced aggregation of washed rabbit platelet, and anthrapuinones((1,2, and 3) showed the inhibition of $Na^+,\;K^+$-ATPase. Among the anthraquionones, 1,2-dimethoxy-3-methyl-8-hydroxy-anthraquinone(1) showed the inhibition of collagen(1.0 ${\mu}g$/ml)-induced aggregation in a concenration-dependent manner with IC50 value of 42.8 ${\mu}g$M.

  • PDF

Inhibition of Platelet Activation by Marine Sterols from Octocorals (팔방산호충류에서 분리한 해양 스테롤 화합물의 혈소판 응집 억제작용)

  • Park, Young-Hyun;Chang, Sung-Keun;Seo, Young-Wan;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.547-553
    • /
    • 1997
  • The purpose of this investigation was to determine the inhibition on $Na^+,\;K^+$-ATPase, cyclic AMP phosphodiesterase and platelet activation by marine sterols isolated from octocorals. Three marine polyhydroxysterols, 7${\alpha},\;8{\alpha}-epoxy-3b{\beta},\;5{\alpha},\;6{\alpha}-trihydroxycholestane (1),\;24-methyl-7{\alpha},\;8{\alpha}-epoxy-3{\beta},\;5{\alpha},\;6{\alpha}-trihydroxycholest-22-ene (2),\;and\;7{\alpha},\;8{\alpha}-epoxy-3{\beta},\;5{\alpha},\;6{\alpha}-trihydroxycholest-22-ene (3)$, were isolated from the Gorgonian Acabaria undulata. Five marine sterols(compound 4, 5, 6, 7, 8) were isolated from the soft coral Alcyonium gracillimum. Three marine polyhydroxysterols (1, 2, 3) and pregna-1. 20-diene-3-one (8) exhibit a potent inhibitory effect on rabbit platelet aggregation induced by collagen and thrombin. Those polyhydroxysterols also exhibit a potent inhibitory effect on cyclic AMP phosphodiesterase. Compound 6 with an unusual cyclic enolether exhibit a inhibitory effect on $Na^+,\;K^+$-ATPase.

  • PDF