• Title/Summary/Keyword: Plate height

Search Result 641, Processing Time 0.026 seconds

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect (코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상)

  • Kim, Gi Mun;Kim, Ye Jee;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

Numerical study of performance of soil-steel bridge during soil backfilling

  • Beben, Damian
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.571-587
    • /
    • 2012
  • This paper presents results of a numerical analysis performed on a corrugated steel plate (CSP) bridge during a backfilling process. The analysed bridge structure was a box culvert having a span of 12315 mm as well as a clear height of 3550 mm. Obtained calculation results were compared with the experimental ones. The paper is presented with the application of the Fast Lagrangian Analysis of Continua (FLAC) program based on the finite differences method (FDM) to determine behaviour of the soil-steel bridge structure during backfilling. The assumptions of a computational 2D model of soil-steel structure with a non-linear interface layer are described. Parametric analysis of the interface element is also given in order to receive the most realistic calculation results. The method based on this computational model may be used with large success to design calculations of this specific type of structure instead of the conventional and fairly inaccurate analytical methods. The conclusions drawn from such analysis can be helpful mostly for the assessment of the behaviour of steel-soil bridge structures under loads of backfilling. In consideration of an even more frequent application of this type of structure, conclusions from the conducted analysis can be generalized to a whole class of similar structural bridge solutions.

A Study on Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계에 관한 연구)

  • 김홍석;윤재웅;손일헌
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.586-593
    • /
    • 2004
  • A terminal pin, which is a part of high-voltage capacitors, has a plate-shaped head section with thickness of 0.8mm. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this study, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the lateral upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, in this study, three dimensional finite element analyses were applied to the lateral upsetting process in order to determine a proper diameter and height of the cylindrical billet. Once the geometry of the initial billet was determined, intermediate forging processes were designed by applying cold forging guidelines and the designed process sequence was verified by two dimensional finite element analysis. In addition, cold forging tryouts were conducted by using a die set, which was manufactured based on the designed process and finally we found that the part qualities were improved by the proposed cold forging process.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

A proposal for improving the behavior of CBF braces using an innovative flexural mechanism damper, an experimental and numerical study

  • Ghamari, Ali;Jeong, Seong‐Hoon
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.455-466
    • /
    • 2022
  • Despite the considerable lateral stiffness and strength of the Concentrically Braced Frame (CBF), it suffers from low ductility and low seismic dissipating energy capacity. The buckling of the diagonal members of the CBF systems under cyclic loading ended up to the shortcoming against seismic loading. Comprehensive researches have been performing to achieve helpful approaches to prevent the buckling of the diagonal member. Among the recommended ideas, metallic damper revealed a better success than other ideas to enhance the behavior of CBFs. While metallic dampers improve the behavior of the CBF system, they increase constructional costs. Therefore, in this paper, a new steel damper with flexural mechanism is proposed, which is investigated experimentally and numerically. Also, a parametrical revision was carried out to evaluate the effect of thickness, slenderness ratio, angle of the main plate, and height of the main plates on the proposed damper. For the parametrical study, 45 finite element models were analyzed and considered. Experimental results, as well as the numerical results, indicated that the proposed damper enjoys a stable hysteresis loop without any degradation up to a high rotation equal to around 31% that is significantly considerable. Moreover, it showed a suitable performance in case of ductility and energy dissipating. Besides, the necessary formulas to design the damper, the required relations were proposed to design the elements outside the damper to ensure the damper acts as a ductile fuse.