• Title/Summary/Keyword: Plate height

Search Result 641, Processing Time 0.03 seconds

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Positional relationship between mandibular third molar and mandibular canal in cone beam computed tomographs

  • Yu, Su-Kyoung;Lee, Ji-Un;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2007
  • Purpose: To provide diagnostic information by evaluation of the positional relationship between the mandibular third molar and the mandibular canal. Materials and Methods: Eighty-nine mandibular third molars were classified as mesioangular, horizontal, vertical, distoangular groups. The distances between the mandibular third molar and the mandibular canal were measured in cone-beam computed tomographs. The height and width ratios of distances from the mandibular third molar and the mandibular canal to the mandibular inferior border and to the lingual cortical plate were calculated. Results: The vertical and buccolingual distances between the mandibular third molar and the mandibular canal were 0.03 mm, 2.96 mm in the mesioangular, 0.37 mm, 3.38 mm in the horizontal, -1.50 mm, 1.38 mm in the vertical, -1.10 mm, 4.20 mm in the distoangular group. There were significant differences in vertical (P < 0.05), but not in buccolingual (P>0.05). The height and width ratios of distances on the mandibular third molar were 47.1 %, 36.1 % in the mesioangular, 47.4%, 34.4% in the horizontal, 37.0%, 46.7% in the vertical, 40.9%, 37.4% in the distoangular group. There were significant differences between the mesioangular and the vertical group, and the horizontal and the vertical group in height ratio (P < 0.05), and also between the mesioangular and the vertical group in width ratio (P < 0.05). The height and width ratios of distances on the mandibular canal showed no significant differences between groups (P > 0.05). Conclusion : The mesioangular group showed the nearest distance between the mandibular third molar and the mandibular canal vertically. The root apex of the mandibular third molar was positioned more buccally in the vertical group than in the mesioangular group.

  • PDF

Mixing and Penetration Studies of Transverse Jet into a Supersonic Crossflow (초음속 유동 내 공동을 이용한 수직 분사 혼합 및 연료 침투거리에 관한 연구)

  • Kim, Chae-Hyoung;Jeong, Eun-Ju;Jeung, In-Seuck;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-32
    • /
    • 2008
  • A non-reacting experimental study on a normal injection into a Mach 1.92 crossflow which flows over various geometries(flat plate, small cavity, large cavity) was carried out to investigate the effect of the momentum flux ratio(J). The aft ramp of the cavity advances the increase of the penetration height and the strong two-dimensional shock from recompression region mainly affects the shock structure and mixing layer at the downstream flow. As flow runs downward, the transverse penetration height increases with increasing J(J = 0.9, 1.7, 3.4). However, above some critical ratio, jet penetration height growth with increasing J is not appeared in flow-field. Large scale cavity has a good mixing efficiency but it increases the drag loss in the combustor.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Effects of Landing Height and Knee Joint Muscle Fatigue on Movement of the Lower Extremity during Cutting After Landing (착지 높이와 무릎관절 근육 피로가 착지 후 방향 전환 동작 시 하지관절의 움직임에 미치는 영향)

  • Kim, You-Kyung;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of landing height and knee joint muscle fatigue on the movement of the lower extremity during cutting after landing. Method : Subjects included 29 adults (age: $20.83{\pm}1.56years$, height: $172.42{\pm}9.51cm$, weight: $65.07{\pm}10.18kg$). The subjects were asked to stand on their dominant lower limb on jump stands that were 30 and 40 cm in height and jump from each stand to land with the dominant lower limb on a force plate making a side step cutting move at a $45^{\circ}$ angle with the non-dominant lower limb. The fatigue level at 30% of the knee extension peak torque using an isokinetic dynamometer. Results : The results showed that the difference of landing height increased maximum range of motion and angular velocity of hip, knee, and ankle joints in the sagittal plane, and in the angular velocity of motion of the hip joint in the sagittal plane. The maximum range of motion of the knee joint in the sagittal plane and the frontal plane decreased on landing from both heights after the fatigue exercise. The angular velocity of the hip joint in the sagittal plane, and the maximum range of motion of the hip joint in the transverse plane decreased for both landing heights after the fatigue exercise. The angular velocity of the hip joint in the frontal plane decreased for the 30 cm landing height after the fatigue exercise. On the other hand, the angular velocity and maximum range of motion of the ankle joint in the sagittal plane for both landing heights, and the angular velocity and maximum range of motion of the ankle joint in the frontal plane increased on landing from the 40 cm height after the fatigue exercise. Conclusion : Different landing heights of 30 and 40 cm and 30% fatigue of peak torque of knee extensor found a forefoot and stiff landing strategy, when cutting after landing. These results might be due to decline in the shock absorption capability of the knee joint and the movement capability related to cutting while increasing the contribution of the ankle joint, which may cause increased ankle joint injuries.

Seismic response estimation of steel plate shear walls using nonlinear static methods

  • Dhar, Moon Moon;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.777-799
    • /
    • 2016
  • One of the major components for performance based seismic design is accurate estimation of critical seismic demand parameters. While nonlinear seismic analysis is the most appropriate analysis method for estimation of seismic demand parameters, this method is very time consuming and complex. Single mode pushover analysis method, N2 method and multi-mode pushover analysis method, modal pushover analysis (MPA) are two nonlinear static methods that have recently been used for seismic performance evaluation of few lateral load-resisting systems. This paper further investigates the applicability of N2 and MPA methods for estimating the seismic demands of ductile unstiffened steel plate shear walls (SPSWs). Three different unstiffened SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed under artificial and real ground motions for Vancouver. A comparison of seismic response quantities such as, height-wise distribution of floor displacements, storey drifts estimated using N2 and MPA methods with more accurate nonlinear seismic analysis indicates that both N2 and MPA procedures can reasonably estimates the peak top displacements for low-rise SPSW buildings. In addition, MPA procedure provides better predictions of inter-storey drifts for taller SPSW. The MPA procedure has been extended to provide better estimate of base shear of SPSW.

Measurements of absorption coefficients of open-type ceilings using 1:25 scale model reverberation chamber (축척모형을 활용한 개방형 천장의 흡음률 측정)

  • Lee, Hye-Mi;Kim, Yong-Hee;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.683-686
    • /
    • 2007
  • This paper investigates acoustical characteristics of open-type ceilings using 1:25 scale model. The field survey in the existing 15 halls was carried out to figure out the ceiling structure. The components of the open-type ceiling were mainly steel truss structures, duct, catwalk and finishing surfaces. In order to investigate the absorption characteristics of the equipped ceiling, the absorption coefficient measurements were made using 1:25 reverberation chamber based on ISO 354. Results showed that the absorption coefficient of the empty ceiling structure (6m-height) with 50%-perforated covering plate was 0.2-0.3 at above 500 Hz. When steel structure was added inside the empty ceiling, absorption coefficient increased by 0.16 at 250-1kHz. Adding catwalk did not increase the absorption, but adding duct increased the absorption at 1-2kHz. NRC of the equipped ceiling was 0.39, and the absorption characteristics were mainly found at high frequencies. In addition, the opening size of the covering plate did not change the absorption coefficient of the equipped ceiling meaningfully.

  • PDF

The Applicability Analysis of FDS code for Fire-Driven Flow Simulation in Railway Tunnel (철도터널 화재 유동에 사용되는 FDS code의 적용성 분석)

  • Jang, Yong-Jun;Park, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.224-230
    • /
    • 2007
  • The performance and applicability of FDS code is analyzed for flow simulation in railway tunnel. FDS has been built in NIST(USA) for simulation of fire-driven flow. RANS and DNS's results are compared with FDS's. AJL non-linear ${\kappa}-{\epsilon}$[7,8] model is employed to calculate the turbulent flow for RANS. DNS data by Moser et al.[9] are used to prove the FDS's applicability in the near wall region. Parallel plate is used for simplified model of railway tunnel. Geometrical variables are non-dimensionalized by the height (H) of parallel plate. The length of streamwise direction is 50H and the length of spanwise direction is 5H. Selected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The characteristics of turbulent boundary layer are introduced. AJL model's predictions of turbulent boundary layer are well agreed with DNS data. However, the near wall turbulent boundary layer is not well resolved by FDS code. Slip conditions are imposed on the wall but wall functions based on log-law are not employed by FDS. The heavily dense grid distribution in the near wall region is necessary to get correct flow behavior in this region for FDS.

Optical Characteristics of LGP with Nanometer-patterned Grating (나노미터 패턴 회절격자 도광판의 광특성)

  • Hong, Chin-Soo;Kim, Chang-Kyo;Lee, Byoung-Wook;Lee, Myoung-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.353-360
    • /
    • 2008
  • The LGP with nanometer structures resulted in enhancement of optical efficiency. Its fundamental mechanism is to recycle the polarized light via one round-trip through QWP(Quarter-Wave Plate) but the maximum efficiency to reach with this method is limited up to 2. To get the larger efficiency than this limited one a LGP with nanometer-patterned grating is suggested. For its optimum design the computer simulation is performed and suggests a grating that the spatial frequency between adjacent patterns is 500nm, its height 250nm, duty cycle 50%, and its cross section is rectangular. On the basis of simulation results the LGP with nanometer-patterned grating is fabricated and its optical properties such as angular intensity distribution and CIE color coordinates are characterized. The angles of transmitted light are nearly the same as the results expected from the generalized Snell's law. Thus the Mathematica code, developed in this experiment, will be applied to designing the optimized LGP. The LGP with nanometer-patterened grating shows the enhancement of transmitted intensity distribution up to 4.9 times.

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF