• Title/Summary/Keyword: Plate forming

Search Result 434, Processing Time 0.031 seconds

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet (AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향)

  • Kwon, K.T.;Kang, S.B.;Kim, H.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

Reinforcement Location of Plate Girders with Longitudinal Stiffeners (플레이트 거더의 수평보강재 보강 위치)

  • Son, Byung-Jik;Huh, Yong-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

Numerical Modeling for Systematization of Line Heating Process

  • Shin, Jong-Gye;Kim, Won-Don;Lee, Jang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.41-54
    • /
    • 1996
  • Sculptured surface structures such as ship hulls are traditionally formed up to the required double curved shape by line heating method. The nature of the line heating process is a transient thermal process, followed by a thermo-elastic-plastic stress field. The permanant shape is dependent on many factors involved in the process, Among them are torch speed and path, supplied heat type and amount , and plate size. Thus, the work is essentially leaded by experts with lots of experiences. However, in order to effectively improve productivity through automation, each factor should be clearly examined how much it affects the final shape. This can not be done only by experiments, but can be achieved by a mechanics-based approach. In this paper, we propose a conceptual configuration for plate forming system, and then present simulations of the line heating process with numerical data in practices and suggest a computerized process of the line heating for practical applications. The modeling of heating torch, water cooling, and the plate to be formed is proposed for the finite element analysis after the mechanics of line heating is studied. Parametric studies are given and discussed for the effects of plate thickness, torch speed and initial curvature in forming a saddle typed surface.

  • PDF

A Study on Flow Characteristics of PBK40 for Glass Lens Forming Process Simulation Using a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 연구)

  • Chang, Sung-Ho;Yoon, Gil-Sang;Shin, Gwang-Ho;Lee, Young-Min;Jung, Woo-Chul;Kang, Jeong-Jin;Jung, Tae-Sung;Kim, Dong-Sik;Heo, Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.115-122
    • /
    • 2007
  • Recently, remarkable progress has been made in both technology and production of optical elements including aspheric lens. Especially, requirements for machining glass materials have been increasing in terms of limitation on using environment, flexibility of material selection and surface accuracy. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP process was developed with an eye to mass production of precision optical glass parts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as camera, video camera, aspheric lens for laser pickup, $f-\theta$ lens for laser printer and prism, and me glass parts including diffraction grating and V-grooved base. GMP process consist a succession of heating, forming, and cooling stage. In this study, as a fundamental study to develop molds for GMP used in fabrication of glass lens, we conducted a glass lens forming simulation. In prior to, to determine flow characteristics and coefficient of friction, a compression test and a compression farming simulation for PBK40, which is a material of glass lens, were conducted. Finally, using flow stress functions and coefficient of friction, a glass lens forming simulation was conducted.

Simulation of Line Heating by High frequency Induction Heating (고주파 유도 가열에 의한 선상가열 시뮬레이션)

  • 김호경;장창두
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.80-85
    • /
    • 2003
  • In this study, we developed an analysis method of plate forming by induction heating, verifying the effectiveness of the present method through a series of experiments. The phenomena of the induction heating involves a 3D transient problem, coupled with electromagnetic, heat transfer, and elastoplastic large deformation analyses. To solve the problem, or present an appropriate model and an integrated system. Using the present analysis model, or can estimate the plate deformation in heating without experiments and simulate the plate bending process of induction heating.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.