• Title/Summary/Keyword: Plate absorber

Search Result 112, Processing Time 0.03 seconds

Dual-Band Metamaterial Absorber without Metallic Back-Plate (금속 접지 판이 없는 이중대역 메타 물질 흡수체)

  • Lee, Hong-Min;Lee, Hyung-Sup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.840-843
    • /
    • 2012
  • In this paper, the authors present a new design for a dual-band metamaterial(MTM) absorber that utilizes resonant-magnetic inclusion of a split-ring resonator(SRR). The proposed MTM unit cell is constructed by two open complementary split-ring resonators(OCSRRs) and an SRR arrangement. To avoid the need for metallic back plate a planar array of SRRs for resonant-magnetic inclusion is placed facing toward the incident wave propagation direction. Each unit cell is printed on the two sides of a FR-4 substrate. A prototype absorber was fabricated with a planar array of $39{\times}39$ unit cells, and measured. The proposed backplane-less absorber can be used for microwave applications.

Analysis of the Planar Electromagnetic Wave Absorber Using the Mode Matching Technique (모드정합법을 이용한 평면형 전자파 흡수체 해석)

  • Hur, Jun;Park, Jong-Eon;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.270-274
    • /
    • 2019
  • In this paper, we analyze a planar electromagnetic absorber by using the mode matching technique(MMT). The proposed electromagnetic absorber has a periodic structure composed of a perfect conductor and ferrite, and the transmitted and reflected powers in response to the incident wave with parallel polarization are calculated according to the thickness of the plate. The proposed absorber shows a high absorption compared to the cases of periodic slits with vacuum or the ferrite plate itself. The solution to the reflected and transmitted powers by MMT is also verified with the results from a commercial simulator.

Performance Analysis of Double-Glazed Flat Plate Solar Collector with Cu-based Solar Thermal Absorber Surfaces

  • Lee, Jeong-Heon;Jeong, Da-Sol;Nam, Yeong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.1-157.1
    • /
    • 2016
  • In this work, we experimentally investigated the solar absorption performance of Cu-based scalable nanostructured surfaces and compared their performance with the conventional TiNOX. We fabricated Cu-based nanostructured surfaces with a controlled chemical oxidation process applicable to a large area or complex geometry. We optimized the process parameters including the chemical compounds, dipping time and process temperature. We conducted both lab-scale and outdoor experiments to characterize the conversion efficiency of each absorber surfaces with single and double glazing setup. Lab-scale experiment was conducted with $50mm{\times}50mm$ absorber sample with 1-sun condition (1kW/m2) using a solar simulator (PEC-L01) with measuring the temperature at the absorber plate, cover glass, air gap and ambient. From the lab-scale experiment, we obtained ${\sim}91^{\circ}C$ and $94^{\circ}C$ for CuO and TiNOX surfaces after 1 hr of solar illumination at single glazing, respectively. To measure the absorber performance at actual operating condition, outdoor experiment was also conducted using $110mm{\times}110mm$ absorber sample. We measured the solar flux with thermopile detector (919P-040-50). From outdoor experiment, we observed ${\sim}123^{\circ}C$ and $131^{\circ}C$ for CuO and TiNOX with 0.6 kW/m2 insolation at double glazing, respectively. We showed that the suggested nanostructured CuO solar absorber has near-equivalent collection efficiency compared with the state-of-the-art TiNOX surfaces even with much simpler manufacturing process that does not require an expensive equipment.

  • PDF

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

An Experimental Study on the Heat Transfer Characteristics for a Flat Plate Solar Collector with a Heat Pipe (열파이프가 부착된 평판형 태양열 집열기의 열전달 특성에 대한 실험적 고찰)

  • 김철주;임광빈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1237-1245
    • /
    • 1993
  • In this study, a model of a flat plate solar collector using a heat pipe was manufactured and tested to investigate such operational characteristics of the present system of solar collector as start-up process, temperature distribution on the absorber plate and operation of the heat pipe. Moreover, collector efficiency was measured for 20-30 minutes of operation at various conditions of weather and the result was compared with that tested by Hill et. a. for a flat plate solar collector using direct circulation of coolant. Some results obtained in this study could be summarized as follows. (1) The required time for the initial start-up process was about 5-6 minutes, but the heat pipe began to operate as soon as the absorber plate was exposed to solar radiation. (2) On the absorber plate, the temperature distributions in axial direction maintained nearly constant, while temperature distributions in transversal direction showed smooth decrease with $3-5^{\cird}C$ along with solar radiation. (3) Thermal inertia of the collector system had a favorable effect to damp the turbulent variation of solar radiation. (4) The collector efficiency of the present system showed nearly the same tendency but a decrease of about 10% compared with that using direct circulation of coolant.

Design of a Dynamic Absorber Using Permanent Magnet Force (영구자석의 자력을 이용한 동흡진기의 설계)

  • Son, Sol-San;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1064-1070
    • /
    • 2010
  • In this work, a dynamic absorber with a plate-type cantilever using magnetic force is proposed to reduce the vibration of a compressor directly. The dynamic absorber using magnetic force has some advantages of easily tuning the control frequency by adjusting the magnet spacing and obtaining wider control frequency band. The dynamic absorber is designed theoretically and tested experimentally to estimate the control frequency band. When the compressor is equipped with the dynamic absorber, the vibration of compressor and the noise level of refrigerator are reduced by 30 % and 3.2 dB respectively.

A Study on the Antenna Front Plate Design for the Improvement of DF Accuracy (방향탐지 정확도 개선을 위한 안테나 전면판 설계에 관한 연구)

  • Kim, In-Seon;Shin, Im-Seob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.669-675
    • /
    • 2011
  • In this paper, we present the AFP(antenna front plate)s which were designed to reduce the reflection for the sake of the improvement of DF(direction finding) accuracy. The AFP consists of front plate, absorber and radome. The AFPs were optimized respectively by real test and we performed the DF test using our AFPs in laboratory. The DF test shows that the DF accuracy is about 2 times better than the requirement capability. Then, the DF field test was executed using the AFPs, which were installed in helicopter in consideration of the reflection by platform. The result of the DF field test is superior to the requirement capability also, which shows the validity of our design method.

Effect of Air Gap Thickness on Top Heat Loss of a Closed-loop Oscillating Heat Pipe Solar Collector

  • Nguyen, Kim-Bao;Choi, Soon-Ho;Yoon, Doo-Ho;Choi, Jae-Hyuk;Oh, Cheol;Yoon, Seok-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • In this paper, effect of air gap thickness between absorber plate and glass cover on top heat loss of a closed loop oscillating heat pipe (CLOHP) solar collector was investigated. The CLOHP, which is made of copper with outer diameter of 3.2mm and inner diameter of 2.0mm, comprises 8 turns with heating, adiabatic and cooling section. The heating section of the heat pipe was attached to absorber plate which heated by solar simulator simulated by halogen lamps. The cooling section of the heat pipe was inserted into collector's cooling section that made of transparent acrylic. Temperatures of absorber plate, glass cover, and ambient air measured by K-type thermocouple and were recorded by MV2000-Yokogawa recorder. Top heat loss coefficients and top heat loss of the collector corresponding to some cases of air gap thickness were determined. The result of experiment shows the optimal air gap thickness for minimum top heat loss of this solar collector.

A Numerical Study on the Thermal Performance of a Solar Air Heater Depending on the Hole Configuration and Geometry in the Absorber Plate (태양열 공기가열기의 흡열판 홀 배치와 형상에 따른 열적 성능에 관한 수치해석적 연구)

  • Shin, Jae Hyuk;Boo, Joon Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.69-80
    • /
    • 2015
  • A series of numerical analyses was conducted to predict the thermal performance of a solar air heater depending on the hole configuration and geometry in the absorber plate. The planar dimensions of the prototype were 1 m (W) by 1.6 m (H), and the maximum air flow considered was $187m^3/h$. It was considered that protruding holes with a triangular opening in the absorber plate would invoke turbulence in the air flow to enhance the convection heat transfer. Six different hole configurations were investigated and compared with each other, while the hole opening height was considered as a design variable. Three-dimensional transient analyses were performed with a commercial software package on the airflow and heat transfer in the model. The numerical results were analyzed and compared from the view point of the outlet air temperature and its time response to derive the optimal hole pattern and hole opening height.