• Title/Summary/Keyword: Plate Structures

Search Result 2,391, Processing Time 0.028 seconds

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.

Effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation (불포화토 겉보기 점착력이 지하굴착시 거동에 미치는 영향)

  • Lee, In-Mo;Jung, Jee-Hee;Kim, Kyung-Ryeol;Kim, Do-Hoon;Hyun, Ki-Chang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.117-127
    • /
    • 2010
  • Gound excavation is frequently executed in unsaturated soil conditions. In this paper, the effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation is studied. The VPPE (Volumetric Pressure Plate Extractor) test, the unsaturated triaxial test and the trap-door test were carried out to figure out how the behavior of soils varies depending on the variation of apparent cohesion. The test results show that the ground behavior is almost identical if the soil is either fully dry or fully saturated. However, if the soil is partially-saturated with the increase of water content, the ground behaves quite differently. In summary, the apparent cohesion in unsaturated soils plays key roles when excavating underground structures.

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.

A Study on Impact Resistance Properties with Composition Materials and Installation Conditions of Protective Panel (방호 패널의 구성 재료 및 설치 조건에 따른 내충격 특성에 관한 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2023
  • This study suggested that protective panels should be installed as sacrificial members as a safety design method for structures with potential explosions such as hydrogen charging stations to minimize direct damage to the structure and have resilience. To this end, the focus of the experiment is on quantitatively evaluating the impact of the structure when the protection panel is installed closely or spaced apart from the structure in a high-speed collision situation of the projectile. The experimental design used steel plates instead of concrete structural members mainly used in the past for excellent reproducibility, and the impact of structural members was compared and analyzed through deformation differences on the back of the steel plate. In addition, the impact of changes in the physical properties of the elastic body used as a separation material for the protective member and the difference in shock wave transmission time according to the protective member and the elastic body on the structural member was investigated.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.