• Title/Summary/Keyword: Plate Forging

Search Result 35, Processing Time 0.02 seconds

On the Manufacture of High Manganese Steel Plate (고(高)망간강(鋼) 판재(板材) 제조(製造)에 대한 연구(硏究))

  • Choi, Ju;Shin, Myung-Chul
    • Applied Microscopy
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 1977
  • For obtaining high manganese steel plates, the study has been made on the optimum conditions in melting, forging, rolling and water toughning treatment practices. The optimum water toughning temperature and time was found to be $1030^{\circ}C$ and 30 min. respectively for the plates of 1 mm thickness. The argon atmosphere is very effective for the prevention of decarburization which can be easily occured in open air. There is a close relation between the degree of c 이 d working and the hardess. The greater the cold reduction ratio is, the smaller the grain size is and it results in the increase of hardness. The improvement of tensile and bending properties can be made by the addition of small amount of nickel, chromium and vanadium.

  • PDF

Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel (매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Seong-Jun;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

Manufacturing Technique of Gilt-Bronze Objects Excavated from Tomb No.1(Donghachong) in Neungsan-ri, Buyeo

  • Shin, Yong-bi;Lee, Min-hee;Kim, Gyu-ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.453-457
    • /
    • 2020
  • Tomb No. 1 (Donghachong) of the Buyeo Neungsan-ri Tomb complex (listed as UNESCO World Heritage Site), is a royal tomb of the Baekje Sabi Period. One wooden coffin unearthed there is an important relic of the funerary culture of the Baekje. This study examines the production techniques of gilt-bronze objects attached to the wooden coffin excavated from Donghachong. The base metal of the gilt-bronze object is pure copper, with single α phase crystals in a heterogeneous form containing annealing twins; Au and Hg are detected in the gilt layer. We suggest that the surface of the forging copperplate is gilded using a mercury amalgam technique; it is thought that the annealing twins of the base material formed during the heat treatment process for the sheet metal. The gilt layer is three to five times thicker for the gilt-bronze objects found near the foot of the coffin than those near the head. We estimate the plating process is carried out at least three times because three layers are identified on the plate near the head. Therefore, it is likely that the materials and methods used to construct the gilt-bronze objects found in different parts of the coffin are the same, but the number of platings is different. This research confirms the metal crafting techniques used in Baekje by the examination of production techniques of these gilt-bronze objects. Further, our paper presents an important example of restoration and reconstruction for a museum exhibition, through effective use of scientific analysis and investigation.

A Study of Material and Production Technique of Scroll Painting Ring in Joseon (조선시대 족자 장황에 사용된 고리의 재료 및 제작기법 연구)

  • Jang, Yeonhee;Yun, Eunyoung;Kwon, Yoonmi;Kim, Sooyeon
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.56-81
    • /
    • 2015
  • Ring in the scroll painting is one of the mounting elements which are fixed string and tassel to hang, these differ widely in shape and produce a variety of metals. Most traditional shapes of ring have been lost, because of remount, there are used Japanese style rings in present.Therefore, this study examines to shape, production technique and analyze component traditional style rings of 19 traditional scroll paintings in National Museum of Korea for restoration of original style. Ring has been recorded official names; Wonhwan(Ring), Gukhwadong(Chrysanthemum shaped ornaments), Baemok(Ring-shaped nail) in Uigwe. Result of an optical microscope (Leica, M205A), Wonhwan has two type of production technique; one is cutting and bending a metal rod and other is cast. Baemok is made to forging process after metal rod or plate by casting alloy. Baemok decoration is metal plate cutting shape, and then decorates it with pattern by using kicking line engraving, chasing and so on. Component analysis result from portable X-ray fluorescence found various metals, such as, brass, iron silver-cooper. Brass based on copper and zinc used rings of 17 scroll painting. Baemok of Yun Sidal portrait is used iron and plated with a tin-lead alloy. Yi Seogu portrait is silver-cooper alloy in whole ring.

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.