• Title/Summary/Keyword: Plate Force

Search Result 1,335, Processing Time 0.03 seconds

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

A Study on the Characteristics of Axial Force in Bridge with Continuous Welded Rail (장대레일화 된 교량의 축력거동특성 연구)

  • Kim, Doo-Hwan;Han, Kwang-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.251-258
    • /
    • 2003
  • This study is to understand the characteristics of axial force behavior that operates to the part of continuous welded rail and to investigate the basic data for secure the structure's stability and retrofit of the track. To develop the FEM model that type of plate girder which is used in the domestic national railway among servicing railway type. It is to analyze the characteristics of axial force behavior according to equip of the expansion joint and support placing by using the axial force simulation in making the continuous welded rail. As the result of research on the parametric valuables through the analysis, it is investigated that 'FMFM type' is more efficient than the other support type. Also, it conclude that structures are having the expansion joint is the most safe condition.

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Development of High Precision Plate Holder in Automotive Seat Recliner by Mechanical Press(I) : Application of FCF Method (기계식 프레스에 의한 자동차 시트 리클라이너의 고정밀 플레이트 홀더 개발(I) : FCF 공법 적용)

  • Kim, Byung-Min;Choi, Hong-Seok;Chang, Myung-Jin;Bae, Jae-Ho;Lee, Seon-Bong;Ko, Dae-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.55-63
    • /
    • 2008
  • Fine blanking is a process of press shearing which makes it possible to produce the thick sheet metal of the finished surface and the close dimensional accuracy over the whole material thickness in the single blanking operation. In this paper, a plate holder of automotive seat recliner is manufactured by FCF(Flow Control Forming) method using the conventional mechanical press instead of the fine blanking press. Main processes for manufacturing of the plate holder by FCF method are embossing, half blanking and trimming processes. Optimal clearance, stripper force and counter force to increase the dimensional accuracy of the plate holder have been investigated by FE-analysis. As a result of FE-analysis, the clearance for both embossing and half blanking processes was -2%t and the forces of stripper and counter were 25ton and 15ton, respectively. After manufacturing the plate holder by FCF method, the measured dimensional characteristics have been compared with the required specifications as the final product. Although the dimensional accuracy of the plate holder manufactured by FCF method was a little inferior to that by fine blanking process, it was satisfactory in a general sense.

Development of a Technique to Prevent Bolt Looseness and to Decrease in Quantity for the Plate Type Heat Exchanger Used in Large Craft (선박용 판형 열교환기의 볼트풀림방지 및 수량최소화기법 개발)

  • Kim, Ho-Yoon;Bae, Won-Byong;Jang, Young-Jun;Han, Seung-Moo;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.44-51
    • /
    • 2007
  • There are many methods to assemble various parts of a product, and one of them is the bolting system widely used in a industrial field due to the merits; easiness to obtain strong tightening force, simplicity of assemble or disassemble in order to repair, substitution or cleaning, and so on. But this bolting system needs attachments not to let a bolt loose and they are an important factor to cost a great deal. In this study, some equations are suggested and FE analyses are carried out to verify the cause of the bolt looseness occurring in the tightening process. And because the number of bolts in the bolting system has been decided by empirical know-how of designers in the field, safety rate in the plate type heat exchanger is often too high. Therefore the equations to decrease in quantity are suggested in consideration of the relationship between a critical shearing force acting on the screw and a normal force acting on the cooling plate by the working fluid.

Analytical study of slant end-plate connection subjected to elevated temperatures

  • Zahmatkesh, F.;Osman, M.H.;Talebi, E.;Kueh, A.B.H.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.47-67
    • /
    • 2014
  • Due to thermal expansion, the structural behaviour of beams in steel structures subjected to temperature increase will be affected. This may result in the failure of the structural members or connection due to extra internal force in the beam induced by the thermal increase. A method to release some of the thermally generated internal force in the members is to allow for some movements at the end supports of the member. This can be achieved by making the plane of the end-plate of the connection slanted instead of vertical as in conventional design. The present paper discusses the mechanical behaviour of beams with bolted slant end-plate connection under symmetrical gravity loads, subjected to temperature increase. Analyses have been carried out to investigate the reduction in internal force with various angles of slanting, friction factor at the surface of the connection, and allowable temperature increase in the beam. The main conclusion is that higher thermal increase is tolerable when slanting connection is used, which means the risk of failure of structures can be reduced.

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.

Development of a small 6-axis force/moment sensor for robot's finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF