• Title/Summary/Keyword: Plate Bending

Search Result 1,038, Processing Time 0.023 seconds

A Discussion on Measurement of Springback Ratio Using Winding Bend (감아굽힘 시험장치의 제작과 스프링백 비의 시험법에 대한 역학적 검토)

  • 김용우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.95-101
    • /
    • 2000
  • To measure springback ratio of thin sheet or plate, winding bend rig is made. It bends a specimen with keeping its curvature constant and measures the bending angles before and after release of bending load. To check the performance of the bend rig, we calculated the bending moment by two ways which are based on simple beam theory. One is that the bending moment is calculated by using the results of bending test, and the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the friction between bending pin of the rig and the surface of specimen, but the latter does not contain any effects of the friction since the bending moment is obtained by using tensile tests. Nevertheless, the values of the two bending moment shows the same level of bending moment, which implies that the friction does not influence on the value of springback ratio in spite of the presence of friction within the cope of the test performed in this experiment.

  • PDF

Analysis of end-plate connections at elevated temperatures

  • Lin, Shuyuan;Huang, Zhaohui;Fan, Mizi
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.81-101
    • /
    • 2013
  • In this paper a robust 2-noded connection element has been developed for modelling the bolted end-plate connection between steel beam and column at elevated temperatures. The numerical procedure described is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determinate the tension, compression and bending moment capacities of end-plate connection in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. In order to validate the model a total of 22 tests are used. It is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Bending Capacity Evaluation of the Infilled Composite Beam with Semi-slim Closed Section (반슬림 폐단면 충전형 합성보의 휨성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.130-140
    • /
    • 2018
  • An AU-composite beam based on U-shaped steel beams and steel plate anchors of type A was developed. The composite beam reduced the height of the building floor and construction cost. In addition, it decreased the length of construction work, and improved the flexural strength and stiffness as a form of tubes. In this study, AU-composite beams were tested directly and their performance was evaluated through bending experiments. The strength of the specimens was increased initially by linear loads and reached a maximum strength due to destruction of the concrete slab. All of the experiments showed more than 85% of the maximum stress and performed gentle movement. In addition, there was good composite behavior with the steel plate anchor that had excellent composite effects and reached full strength until the maximum strength was reached. When the thickness of the steel plate was increase, the flexural stiffness and strength of the specimen were improved. Therefore, the flexural strength of AU-composite beams can be estimated using the flexural strength formula according to the KBC 2016.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder (파형 웨브주름 보의 휨성능에 관한 실험적 연구)

  • Kim, Jong Sung;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.503-511
    • /
    • 2015
  • In long span steel structure, the plate girder reinforced with stiffeners are commonly used. When choosing the cross section with deep depth of girder as well as narrow width, however, out of plane buckling can be a problem due to web slenderness. In an effort to solve this issue, current study determined the applicability of using corrugated web girder with deep depth as bending member, which is generally being utilized in both factory and warehouse nationwide. To accomplish this, we performed the loading test of H-shaped beam with sinusoidal corrugated web. Corrugated web CP-2.3 specimen exhibited 12% less maximal bending strength but CP-3.2 specimen exerted 24% increase in strength compared to plate web P-4.5. this result indicates that corrugated web provides enough strength even with unfavorable width-thickness ratio of plate. And bending as well as shear strength estimated by the Eurocode (EN 1993-1-5) were compared with both bending strength by loading test and shear strength estimated by KBC2009. In case of eurocode, increase in plate thickness did not help in bending performance improvement. moreover, shear performance was sensitive to the thickness of the web folds and the shape of the web plate.

Nonlocal elasticity theory for bending and free vibration analysis of nano plates (비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3207-3215
    • /
    • 2012
  • In this paper, we study the bending and free vibration analysis of nano plate, using a nonlocal elasticity theory of Eringen with a third-order shear deformation theory. This theory has ability to capture the both small scale effects and quadratic variation of shear strain and consequently shear stress through the plate thickness. Analytical solutions of bending and vibration of a laminated composite nano plate are presented using this theory to illustrate the effect of nonlocal theory on deflection of the nano plates. The relations between nonlocal third-order and local theories are discussed by numerical results. Further, effects of (i) nonlocal parameters, (ii) laminate schemes, (iii) directions of the fiber angle and (iv) number of layers on nondimensional deflections are investigated. In order to validate the present solutions, the reference solutions are used and discussed. The results of anisotropic nano plates using the nonlocal theory may be the benchmark test for the bending analysis.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue (평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF