• Title/Summary/Keyword: Plate Anchor

Search Result 130, Processing Time 0.021 seconds

A Study on the Characteristics of Creep in Kaolinite Soil Subjected to Uplift Capacity (인발력을 받는 Kaolinite 지반의 장기변위 특성에 관한 연구)

  • 이준대;최기봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • When plate anchors are embedded in soft clay, they may undergo a deformation under the pressure of sustained load. The critical depth at which the transition from a shallow to a deep anchor takes place depends on the properties of soil. Laboratory model tests were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated kaolinite. The tests have been conducted with the anchor at two different moisture contents. Based on the model test results, empirical relationships between the net load, rate of strain, and time have been developed. In creep tests of kaolinite for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time.

  • PDF

Stress Properties for Anchorage Zone of Cable Stayed Bridge Prestress Concrete (프리스트레스트 콘크리트 사장교 정착부의 응력특성)

  • 조병완;변윤주;최준혁;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.531-536
    • /
    • 2002
  • The design of anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress distribution, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

  • PDF

Influence of Suction Force of Plate Anchor Embedded in Kaolinite (Kaolinite에 근입된 앵커에서 흡입력이 미치는 영향)

  • 이준대;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.108-113
    • /
    • 1997
  • Plate anchors are primarily used in the foundation construction of earth-supported and earth-retaining structures. In order to estimate uplift capacity as well as suction force of clay, model tests were peformed with respect to various embedment depths and two different moisture contents in the prepared saturated kaolinite. Further, suction effects on the ultimate uplift capacity, at the various embedment depths of anchor, were also taken into account. Test results show that ultimate uplift capacity including suction force increases from 4.2kg at H/D=1 upto 11.6kg at H/D=5 in K1 and from 2.3kg at H/D=1 upto 7.3kg at H/D=5 in K2 respectively. The ratio of $F_s/Q_n/$ decreases along with the increases in the embedment ratio. In general, mud suction force under the ultimate uplift capacity in kaolinite decreases or becomes constant along with the increase of the embedment ratio.

  • PDF

An Experimental Study on Pullout Behavior of Shallow Bearing Plate Anchor (얕은 지압형 앵커의 인발거동특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Kim, Hyung-Kong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.5-18
    • /
    • 2014
  • Depending on the underground load support mechanism, anchors are classified as friction anchors, bearing plate anchors and the recently developed combined friction-bearing plate anchors which combine the characteristics of both the friction and bearing plate type anchors. Even though numerous studies have been performed on bearing plate anchors, there were only few studies performed to observe the failure surface of bearing plate anchors. Furthermore most of the soil materials used on these tests were not real sand but carbon rods. In this study, sand was placed in the soil tank and laboratory tests were performed with bearing plate anchors installed with an embedment depth (H/h) ranging from 1~6. The variation in the pullout capacity and the behaviour of soil with the embedment depth (H/h) were observed. Ground deformation analysis program was also used to analyze soil displacement, zero extension direction, maximum shear strain contours. It was determined from the analysis of the results that at ultimate pullout resistance the deformation was 5 mm and the failure surface occurred in a narrower area when compared with results of the previous researches. It was also observed that the width of the fracture surface gradually becomes wider and expands up to the surface as the deformation increases from 10 mm to 15 mm.

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures (소규모 철골조 노출형 주각부의 반복가력 실험)

  • Lim, Woo-Young;You, Young-Chan;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2017
  • Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

Study on Flexural Strengthening Capacity of FRP-Plate Strengthening System with the Velcro (벨크로를 이용한 FRP판 보강공법의 휨보강성능에 대한 연구)

  • Shin, Dong-Yoon;Hong, Geon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.121-124
    • /
    • 2006
  • This study focuses on the flexural behavior of RC beam with externally bonding FRP reinforcement. FRP-plate strengthening system is mainly installed with an anchor-bolt. But the installation with it has several disadvantage as a complicated work, a high labor costs. To complement these disadvantage, the test is performed about improved FRP-plate strengthening system.

  • PDF

Assessment of the Anchor Head System Embedded in the Ground Surface (지표면에 근입한 앵커두부처리 시스템의 적용성 평가)

  • Min, Kyoung-Nam;Bae, Woo-Seok;Ahn, Kwang-Kuk;Jeong, Ku-Sic
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Anchor heads a recommonly exposed to surface weathering processes that cause physical damage by vibration and external forces. This study presents a new method of anchor-head installation that uses near-surface embedding based on analyses of concrete block failure. ABAQUS 3D numerical modeling performed to compare this method with the standard technique and to analyze the distribution of displacement and the stress pattern. In addition, application of the method to a real-world case was tested by in-situ measurements. The results show a maximum vertical stress of 9.73 MPa and vertical displacement of 1.34 mm. Field tests indicated that displacement of a concrete block was 3 to 4 times greater than that of an embedded bearing plate.

Behavior of Wedge-Type Anchor System for External Prestressing Method with CFRP (외부 긴장 보강을 위한 탄소섬유 복합재료용 쐐기형 정착구 거동)

  • Shin Jae-Min;Jung Dae-Sung;Jung Woo-Tae;Park Jong-Sup;Park Young-Hwan;Kim Chul-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • This paper present test result to develop wedge-type anchor system for external prestressing method with CFRP. The test results indicated that the lower a slope angle and elastic of wedge are, the higher ultimate strengths are for plate types. Bar types showed premature failure because of local high stress in FRP of anchor system. Therefore, to improve the strength for bar types needs further work of strengthening sleeves, slope angles of wedge and materials.

  • PDF

A Study on the Cut-slope Maintenance according to Anchor Tension Force (앵커 긴장력 변화에 따른 비탈면 유지관리 연구)

  • Park, Byungsuk;Kim, Wooseok;Hwang, Sungpil;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.673-682
    • /
    • 2020
  • The ground shear force at the expected failure surface and resistance force due to reinforced anchor can act as important factors according to a failure type from the stability viewpoint at a slope. Furthermore, the anchor's axial force may vary at an anchor-reinforced slope due to ground weathering, settlement, and corrosion in the incompletely anti-corrosion treated steel wire strand at a ground where the bearing plate is installed. However, in case that the resistance force of the anchor is locally lost due to the variation of the anchor's axial force, the resistance force may not play the role so that the external force tends to be transferred to the surrounding anchors, causing an increase in the tensile force in the surrounding anchors. Accordingly, a stability problem at the entire slope may occur, which requires much attention. Thus, this study proposed a method to monitor a variation trend of the tensile force of anchors installed at a slope and infer the external stability at the entire slope considering the monitoring result.

Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2 (YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식)

  • Dang, Xuan-Truong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.713-725
    • /
    • 2019
  • Automatic License Plate Recognition (ALPR) is a technology required for many applications such as Intelligent Transportation Systems and Video Surveillance Systems. Most of the studies have studied were about the detection and recognition of license plates on cars, and there is very little about detecting and recognizing license plates on motorbikes. In the case of a car, the license plate is located at the front or rear center of the vehicle and is a straight or slightly sloped license plate. Also, the background of the license plate is mainly monochromatic, and license plate detection and recognition process is less complicated. However since the motorbike is parked by using a kickstand, it is inclined at various angles when parked, so the process of recognizing characters on the motorbike license plate is more complicated. In this paper, we have developed a 2-stage YOLOv2 algorithm to detect the area of a license plate after detection of a motorbike area in order to improve the recognition accuracy of license plate for motorbike data set parked at various angles. In order to increase the detection rate, the size and number of the anchor boxes were adjusted according to the characteristics of the motorbike and license plate. Image warping algorithms were applied after detecting tilted license plates. As a result of simulating the license plate character recognition process, the proposed method had the recognition rate of license plate of 80.23% compared to the recognition rate of the conventional method(YOLOv2 without image warping) of 47.74%. Therefore, the proposed method can increase the recognition of tilted motorbike license plate character by using the adjustment of anchor boxes and the image warping which fit the motorbike license plate.