• Title/Summary/Keyword: Plate Algorithm

Search Result 601, Processing Time 0.03 seconds

Efficient NLP Techniques for the Optimum Design of Simple Steel Plate Girder Cross Section (단순강판형 단면의 최적설계를 위한 효율적인 비선형계획기법)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.111-122
    • /
    • 1994
  • In this study, an algorithm which can be applied to the optimum design of simple steel plate girders was developed, and efficient optimization strategies for the solution of algorithm were found out. The optimum design algorithm consists of 3-levels of optimization. In the first and second levels of optimization, the absolute maximum bending moment and shearing force are extracted and in the third level of optimization, the optimum cross section of steel plate girder is determined. For the optimum design of cross section, the objective function is formulated as the total area of cross section and constraints are derived in consideration of the various stresses and the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge. Sequential unconstrained minimization technique using the exterior penalty function method(SUMT-EP), sequential linear programming(SLP) and sequential quadratic programming (SQP) are proved to be efficient and robust strategies for the optimum design of simple plate girder cross section. From the reliable point of view, SLP is the most efficient and robust strategy and SQP is the most efficient one from the viewpoint of converguency and computing time.

  • PDF

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

A New Algorithm of License Plate Location

  • Jin, Dan;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.108-110
    • /
    • 2004
  • Automatic license plate recognition (LPR) is one of the critical techniques of the intelligent transportation system (ITS), in which license plate location plays an important role. In this paper, through surveying the international existing techniques, a new method for locating license plate is proposed: utilize row scan method to locate up and down boundary of the plate; and based on the location of up and down boundary, take advantage of the feature of plate area to locate left and right boundary of the plate. The tests of using the proposed algorithms have been conducted. The experimental results show that the proposed approaches are reasonable and accurate.

  • PDF

Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

  • Dalavi, Amol M.;Pawar, Padmakar J.;Singh, Tejinder Paul
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.266-273
    • /
    • 2016
  • Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Vehicle Plate Extraction Algorithm for an Exculsive Bus Lane (버스 전용차선에서의 차량 번호판 추출 알고리즘)

  • 설성욱;이상찬;주재흠;강현인;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • License plate recognition system for an exclusive bus-lane is made of 5 core parts which are vehicle detection, image acquisition individual character extraction, character recognition and data transmission. Among them, the accuracy of license plate extraction can bring effect significantly to the accuracy of a whole system recognition rate also the more exact extraction of license plate is required in various weather and environment conditions. Therefore in this paper we propose a plat extraction algorithm that makes pyramid structure to reduced the extraction processing time binarizes plate's template region using adaptive thresholding extracts candidate region containing plate, and verifies a final region using plate character distribution characteristics among the candidates. Experimenal results were exactly extracted the license plate region by using proposed method to the image obtained in an exclusive bus-lane with various weather and environment conditions.

  • PDF

A Study on the Piece Auto-Nesting Using Genetic Algorithm (유전자 알고리즘을 이용한 부재 자동배치에 관한 연구)

  • 조민철;박제웅
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.65-69
    • /
    • 2001
  • In this paper, consider the three cases of decide for appling point a general Simple Genetic Algorithm about heuristic method(Bottom and Left Sliding) at the piece auto-nesting on the row plate. The 1st case, about only using the Simple Genetic Algorithm. The 2nd case, applied the heuristic method to the genetic operating of the Simple Genetic Algorithm. The 3rd case, applied the heuristic method to the final result of the Simple Genetic Algorirhm. The estimation of final result were proceed to developed simulation program in this research.

  • PDF

Recognition of Car License Plate by Using Dynamical Thresholding and Neural Network with Enhanced Learning Algorithm (동적인 임계화 방법과 개선된 학습 알고리즘의 신경망을 이용한 차량 번호판 인식)

  • Kim, Gwang-Baek;Kim, Yeong-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.119-128
    • /
    • 2002
  • This paper proposes an efficient recognition method of car license plate from the car images by using both the dynamical thresholding and the neural network with enhanced learning algorithm. The car license plate is extracted by the dynamical thresholding based on the structural features and the density rates. Each characters and numbers from the p]ate is also extracted by the contour tracking algorithm. The enhanced neural network is proposed for recognizing them, which has the algorithm of combining the modified ART1 and the supervised learning method. The proposed method has applied to the real-world car images. The simulation results show that the proposed method has better the extraction rates than the methods with information of the gray brightness and the RGB, respectively. And the proposed method has better recognition performance than the conventional backpropagation neural network.

도로영상에서 차량 특성 곡선을 이용한 차종 구분 알고리즘 개발

  • 김희식;이호재;이평원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.423-426
    • /
    • 1995
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. To recognize the type af cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the similarity method is used to recognize the numbers on the plates.

  • PDF