• Title/Summary/Keyword: Plate Algorithm

Search Result 604, Processing Time 0.022 seconds

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks (자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘)

  • Do, Myungsik;Bae, Hyunesook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.307-315
    • /
    • 2008
  • The aim of this study is to develop travel time estimation model by using Self-Organized Neural network(in brief, SON) algorithm. Travel time data based on vehicles equipped with GPS and number-plate matching collected from National road number 3 (between Jangji-IC and Gonjiam-IC), which is pilot section of National Highway Traffic Management System were employed. We found that the accuracies of travel time are related to location of detector, the length of road section and land-use properties. In this paper, we try to develop travel time estimation using SON to remedy defects of existing neural network method, which could not additional learning and efficient structure modification. Furthermore, we knew that the estimation accuracy of travel time is superior to optimum located detectors than based on existing located detectors. We can expect the results of this study will make use of location allocation of detectors in highway.

Development of a Control System for Automated Line Heating Process by an Object-Oriented Approach

  • Shin, Jong-Gye;Ryu, Cheol-Ho;Choe, Sung-Won
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.4
    • /
    • pp.1-12
    • /
    • 2002
  • A control system for an automated line heating process is developed by use of object-oriented methodology. The main function of the control system is to provide real-time heating information to technicians or automated machines. The information includes heating location, torch speed, heating order, and others. The system development is achieved by following the five steps in the object-oriented procedure. First, requirements are specified and corresponding objects are determined. Then, the analysis, design, and implementation of the proposed system are sequentially carried out. The system consists of six subsystems, or modules. These are (1) the inference module with an artificial neural network algorithm, (2) the analysis module with the Finite Element Method and kinematics analysis, (3) the data access module to store and retrieve the forming information, (4) the communication module, (5) the display module, and (6) the measurement module. The system is useful, irrespective of the heating sources, i.e. flame/gas, laser, or high frequency induction heating. A newly developed automated line heating machine is connected to the proposed system. Experiments and discussions follow.

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

Axisymmetric large deflection analysis of fully and partially loaded shallow spherical shells

  • Altekin, Murat;Yukseler, Receb F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.559-573
    • /
    • 2013
  • Geometrically non-linear axisymmetric bending of a shallow spherical shell with a clamped or a simply supported edge under axisymmetric load was investigated numerically. The partial load was introduced by the Heaviside step function, and the solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for three geometrical parameters. The accuracy of the algorithm was checked by comparing the central deflection, the radial membrane stress at the edge, or the transverse shear force with the solutions of plates and shells in the literature and good agreement was obtained. The main findings of the study can be outlined as follows: (i) If the shell is fully loaded the central deflection of a clamped shell is larger than that of a simply supported shell provided that the shell is not very shallow, (ii) if the shell is partially loaded the central deflection of the shell is sensitive to the parameters of thickness, depth, and partial loading but the influence of the boundary conditions is negligible.

Calculus of the defect severity with EMATs by analysing the attenuation curves of the guided waves

  • Gomez, Carlos Q.;Garcia, Fausto P.;Arcos, Alfredo;Cheng, Liang;Kogia, Maria;Papelias, Mayorkinos
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2017
  • The aim of this paper is to develop a novel method to determine the severity of a damage in a thin plate. This paper presents a novel fault detection and diagnosis approach employing a new electromagnetic acoustic transducer, called EMAT, together with a complex signal processing method. The method consists in the recognition of a fault that exists within the structure, the fault location, i.e. the identification of the geometric position of damage, and the determining the significance of the damage, which indicates the importance or severity of the defect. The main scientific novelties presented in this paper is: to develop of a new type of electromagnetic acoustic transducer; to incorporate wavelet transforms for signal representation enhancements; to investigate multi-parametric analysis for noise identification and defect classification; to study attenuation curves properties for defect localization improvement; flaw sizing and location algorithm development.

Crack Size Determination Through Neural Network Using Back Scattered Ultrasonic Signal (저면산란 초음파 신호 및 신경회로망을 이용한 균열크기 결정)

  • Lee, Jun-Hyeon;Choe, Sang-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.52-61
    • /
    • 2000
  • The role of quantitative nondestructive evaluation of defects is becoming more important to assure the reliability and the safety of structure, which can eventually be used for residual life evaluation of structure on the basis of fracture mechanics approach. Although ultrasonic technique is one of the most widely used techniques for application of practical field test among the various nondestructive evaluation technique, there are still some problems to be solved in effective extraction and classification of ultrasonic signal from their noisy ultrasonic waveforms. Therefore, crack size determination through a neural network based on the back-propagation algorithm using back-scattered ultrasonic signals is established in this study. For this purpose, aluminum plate containing vertical or inclined surface breaking crack with different crack length was used to receive the back-scattered ultrasonic signals by pulse echo method. Some features extracted from these signals and sizes of cracks were used to train neural network and the neural network's output of the crack size are compared with the true answer.

A Numerical Study of the High-Velocity Impact Response of a Composite Laminate Using LS-DYNA

  • Ahn, Jeoung-Hee;Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • The failure of a Kevlar29/Phenolic composite plate under high-velocity impact from an fragment simulation projectile was investigated using the nonlinear explicit finite element code, LS-DYNA. The composite laminate and the impactor were idealized by solid elements, and the interface between the laminas was modeled as a tiebreak type in LS-DYNA. The interaction between the impactor and laminate was simulated using a surface-to-surface eroding contact algorithm. When the stress level meets the given failure criteria, the layer in the element is eroded. Numerical results were verified through existing test results and showed good agreement.

Dynamic model updating of the laminated composite plate using natural frequencies measured from modal test (고유진동수의 실험값을 사용한 복합재 적층판의 동적 모델링 개선)

  • 홍단비;유정규;박성호;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.340-346
    • /
    • 1998
  • In order to improve the prediction of dynamic behavior in structures, several lower vibration modes from FFT analysis through experiments are used to update the mechanical properties followed by the updated frequencies from numerical analysis. Performance index consists of the sum of error norms between the chosen frequencies and corresponding frequencies from numerical analysis. As an updating process of the natural frequencies, the optimization algorithm based on conjugate gradient method is adopted. The gradient of performance index is calculated using the sensitivity of selected eigenvalues with respect to each design parameter. The mechanical properties of lamina, E$\_$l/, E$\_$2/, .nu.$\_$12/ and G$\_$12/, are design parameters for the updating process. The proposed method is applied to predict the dynamic behavior of composite laminated plates of [0]$\_$8T/ and [.+-.45]$\_$2S/ separately or interchangeably. Also, the mixed case for [0]$\_$8T/ and [.+-.45]$\_$2S/ is exarm'ned to check the possibility for the improved prediction generally. The good agreement is obtained between the measured frequencies and the numerical ones. Based on the results for all the cases studied, the proposed approach has a clear potential in characterizing the mechanical properties of composite lamina.

  • PDF

Design of Distributed Modal Transducer by Optimizing Gain-weights of Interface Circuit (인터페이스 회로의 이득 최적화를 통한 분포형 모달 변환기의 설계)

  • 김지철;황준석;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.444-449
    • /
    • 1998
  • A modal transducer in two-dimensional structure can be implemented by varying the distributed transducer's gain spatially. In this paper, a method based on finite element method is developed for optimizing spatial gain distribution of PVDF transducer to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this continuous gain distribution without repoling die PVDF film, the gain distribution is approximated by optimizing gain-weights of interface circuit. The whole spatial area of the PVDF film is divided into several electrode segments and the signals from each segment are properly weighted and summed by interface circuit. This corresponds to the approximation of a continuous function using discrete values. The electrode partition is optimized using the genetic algorithm. Gain-weights are optimized using the simplex search method. A modal sensor for first to fourth modes of aluminum plate is designed using PVDF film with gain-weighted interface circuit. Various lamination angles of PVDF film are taken into consideration to utilize the anisotropy of the PVDF film. Performance of the optimized' PVDF sensor is demonstrated by numerical simulations..

  • PDF