• Title/Summary/Keyword: Plastid

Search Result 151, Processing Time 0.031 seconds

Plastid Transformation of Soybean Suspension Cultures

  • Zhang, Xing-Hai;Archie R.Portis. Jr.;Jack M.Widholm
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2001
  • Plastid transformation was attempted with soybean [Glycine max (L.) Merr.] leaves and photoautotrophic and embryogenic cultures by particle bombardment using the transforming vector pZVII that carries the coding sequences for both subunits of Chlamydomonas reinhardtii Rubisco and a spectinomycin resistance gene (aadA). Spectinomycin resistant calli were selected from the bombarded leaves but the transgene was not present, indicating that the resistance was due to mutations. The Chlamydomonas rbcL and rbcS genes were shown to be site-specifically integrated into the plastid genome of the embryogenic cells with a very low transformation efficiency. None of the transformed embryogenic lines survived the plant regeneration process so no whole plants were recovered. This result does indicate that it should be possible to insert genes into the plastid genome of the important crop soybean if the overall methods are improved.

  • PDF

Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

  • Lee, Sa Mi;Kang, Kyungsu;Chung, Hyunsup;Yoo, Soon Hee;Ming Xu, Xiang;Lee, Seung-Bum;Cheong, Jong-Joo;Daniell, Henry;Kim, Minkyun
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastidexpressed green fluorescent protein (GFP) and aminoglycoside 3′-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

Effect of Benzyladenine on Plastid Development of Rape Cotyledons during Greening (녹화중 유채자엽의 색소체 발달에 미치는 Benzyladenine의 효과)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.255-262
    • /
    • 1986
  • Developmental changes of chlorophyll-protein (CP)-complex and plastid membrane proteins during the greening of rape (Brassica napus L.) cotyledons were examined in order to investigate the effect of benzymladenine (BA) on plastid development. The formation of CP-complexes was slightly promoted by BA treatment in early greening stage, at 24 h and 48 h after illumination. However, BA inhibited the development of CP-complexes at 72 h after illumination. On the profiles of plastid membrane proteins with greening time, it was found that the 24 kd protein was increased and the 56 kd protein was decreased in both water control and BA-treated cotyledons. However, the above two traits were retarded under BA treatment, respectively. From the obtained result, plastid development of rape cotyledon during greening was partially affected by interaction between light and BA dependent on its physiological age.

  • PDF

Improved plastid transformation efficiency in Scoparia dulcis L.

  • Kota, Srinivas;Hao, Qiang;Narra, Muralikrishna;Anumula, Vaishnavi;Rao, A.V;Hu, Zanmin;Abbagani, Sadanandam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The high expression level of industrial and metabolically important proteins in plants can be achieved by plastid transformation. The CaIA vector, a Capsicum-specific vector harboring aadA (spectinomycin resistance), is a selectable marker controlled by the PsbA promoter, and the terminator is flanked by the trnA and trnI regions of the inverted repeat (IR) region of the plastid. The CaIA vector can introduce foreign genes into the IR region of the plastid genome. The biolistic method was used for chloroplast transformation in Scoparia dulcis with leaf explants followed by antibiotic selection on regeneration medium. Transplastomes were successfully screened, and the transformation efficiency of 3 transgenic lines from 25 bombarded leaf explants was determined. Transplastomic lines were evaluated by PCR and Southern blotting for the confirmation of aadA insertion and its integration into the chloroplast genome. Seeds collected from transplastomes were analyzed on spectinomycin medium with wild types to determine genetic stability. The increased chloroplast transformation efficiency (3 transplastomic lines from 25 bombarded explants) would be useful for expressing therapeutically and industrially important genes in Scoparia dulcis L.

Plastid-associated galactolipid composition in eyespot-containing dinoflagellates: a review

  • Graeff, Jori E.;Elkins, Lindsey C.;Leblond, Jeffrey D.
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.73-90
    • /
    • 2021
  • Relative to the large number of photosynthetic dinoflagellate species, only a select few possess proteinaceous, carotenoid-rich eyespots which have been demonstrated in other algae to act in phototactic responses. The proteins comprising the different categories of dinoflagellate eyespots are positioned in or near the peridinin-containing photosynthetic plastid membranes which are composed primarily of two galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG). Within eyespot-containing dinoflagellates, this arrangement occurs mostly in those with secondary plastids, although some dinoflagellates with tertiary plastids of diatom origin are known to possess eyespots. We here provide an examination of the MGDG and DGDG composition of eyespot-containing dinoflagellates with secondary, peridinin-containing plastids and tertiary plastids of diatom origin to address the fundamental question of whether eyespots and their component proteins and carotenoids are associated with alterations in galactolipid composition when compared to eyespot-lacking photosynthetic dinoflagellates. This is an important question because the dinoflagellate eyespot-plastid membrane system can be considered a more complicated and evolved state of plastid development. Included in this examination are data on the previously unexamined peridinin- and type A eyespot-containing dinoflagellate Margalefidinium polykrikoides, and the type D eyespot-containing, aberrant plastid "dinotom" Durinskia baltica. In addition, we have reviewed the galactolipid composition of algae from the Chlorophyceae, Cryptophyceae, and Euglenophyceae as a comparison to determine if algal classes apart from the Dinophyceae contain altered galactolipids in association with eyespots. We conclude that the presence of an eyespot in dinoflagellates and other algae is not associated with noticeable changes in galactolipid composition.

Expression of the Glyphosate Resistant Gene, cp4-epsps, through Plastid Transformation in Rice (Oryza sativa L.) (벼 색소체 형질전환을 이용한 글리포세이트 저항성 유전자 cp4-epsps의 발현)

  • Kang, Kyung-Su;Kim, Min-Kyun
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 2006
  • Heteroplasmic rice plastid transformant was generated using suspension cells as bombardment materials. PCR analyses confirmed incorporation of aadA and cp4-epsps genes into the rice plastid genome by homologous recombination events via the flanking sequences of the trnI and trnA. Transplastomic calli were actively proliferated when cultured on AAM2 medium supplemented with various concentrations (500-3000 mg/L) of streptomycin in dark condition, and transplastomic suspension cells showed resistance to nonselective herbicide, glyphosate. Through 'agarose pie selection' method, heteroplastomic calli, containing considerably high level of transplastome and expressing the CP4 EPSPS protein, were obtained. They were further regenerated to green shoots with healthy roots.

Development of a Highly Efficient Isolation Protocol for Mitochondrial DNA and RNA Using Small Scale Plant Tissues (식물의 초경량 조직을 이용한 미토콘드리아의 DNA와 RNA 정제)

  • Kim Kyung-Min;Lim Yong-Suk;Shin Dong-Ill;Sul Ill-Whan
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.240-244
    • /
    • 2006
  • We present a fast and simple protocol for purification of mitochondria, mitochondrial DNA, and RNA from small amounts of tomato leaves. This method uses a high ionic strength medium to isolate mitochondria and extract mitochondrial DNA and RNA from a single preparation and is easily adaptable to other plant species. Mitochondria was confirmed by MitoTracker. The mitochondrial DNA was not contaminated by plastid DNA, was successfully used for PCR. Similarly, the isolated mitochondrial RNA was not contaminated only slightly contaminated (leaves) by plastid RNA. RNA prepared according to our method was acceptable for RT-PCR analysis

The complete plastid genome of Scopolia parviflora (Dunn.) Nakai (Solanaceae)

  • Park, Jin Hee;Lee, Jungho
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.1
    • /
    • pp.60-64
    • /
    • 2016
  • Scopolia parviflora of the family Solanaceae is an endemic species of Korea and a traditional Korean medicinal plant. The plastid genome was sequenced by next-generation sequencing (NGS) method. The characterized cp genome is 156,193 bp in size; the large single-copy (LSC) region is 86,364 bp, the inverted repeat (IR) is 25,905 bp, and the small single copy (SSC) region is 18,019 bp. The overall GC content of the plastid genome amounts to 37.61%. The cp genome contains 113 genes and 21 introns, including 80 proteincoding genes, four RNA genes, 30 tRNA genes, 20 group II introns, and one group I intron. A phylogenetic analysis showed that Scopolia parviflora was closely related to Hyoscyamus niger.