• Title/Summary/Keyword: Plasticizer migration

Search Result 15, Processing Time 0.02 seconds

Analysis of Adhesion Characteristics of Solid Propellants by Kind of Barrier Coat (접착 보조제 종류에 따른 고체 추진제 접착 특성 분석)

  • Jang, Myungwook;Koo, Myungjun;Yun, Jaeho;Lee, Dug Bum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • A sturdy on the adhesion properties of solid propellants, liners, and insulation was carried out according to the types of barrier coats. A barrier coats were used to prevent migration of the plasticizer or curative between the propellant/liner/insulation, and the barrier coat was selected out of Isocyanates with different molecular weight and number of -NCO in one molecule. As a result, it was found that the more the -NCO group and the larger molecular weight, the stronger adhesion. In addition, as a result of experiments about effects of the pot life after applying the barrier coat on bond strength, the adhesion strength was shown to increase as the pot life was short.

Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility (우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: Cellulose acetate (CA) was blended with polyethyleneglycol (PEG) having different molecular weight at various mixing conditions to enhance melt-processibility of CA, which might prevent the harmful effect resulted from the introduction of phthalic plasticizer. Methods: To establish optimal plasticizing conditions, CA/PEG blends were examined under various plasticizing conditions: PEG concentration, molecular weight of PEG, and plasticzing temperature. Mechanical properties of the CA/PEG blends, as well as migration and exudation of the PEG, were performed in order to evaluate the efficiency of plasticization. Results: Compared to industrial CA resin plasticized by diethyl phthalate, CA/PEG blends exhibited similar thermal plasticization. It was established that the optimum condition was to blend 30~40 phr PEG with molecular weight 400 at $175{\sim}180^{\circ}C$. CA/PEG blend showed superior glassness, PEG stability, and mechanical properties. Conclusions: CA/PEG blends would be a eco-friendly glasses frame to substitute traditional CA glasses frame prepared phthalate plasticizers.

A Study on the Elution of the PVC Film Containing Norbornene Dialkylester (노보넨 다이알킬에스터를 포함한 PVC필름의 용출성 연구)

  • Jang, Hye-Jin;Park, Seong-Ho;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.225-228
    • /
    • 2018
  • Plasticizers added to thermoplastic polymers are known to shorten the life of products due to the elution to outside, and some of them are harmful to our environment and human body. Since the use of phthalate plasticizers suspected of being carcinogens has been gradually prohibited, there is a need for environmentally friendly plasticizers that can replace them. Most of the substances have a low compatibility with resin, high cost and lack of safety verification. Therefore, in this study, four kinds of norbornene dialkyl ester compounds possessing excellent physical properties, which are also reported as safe compounds from the toxicity evaluation, were added to PVC resin to evaluate the possibility of human exposure by leaching, and also the potential usage as plasticizer candidates alternative to commercial ones including DEHP, DINCH and DOTP. The test was carried out according to the American standard test method (ASTM). The results showed that di-2-ethylhexyl-5-norbornene-2,3-dicarboxylate (DEHN) in aqueous solvents and diisopentyl-5-norbornene-2,3-dicarboxylate (DIPN) compounds in oil solvents were superior or equivalent to DEHP. In addition, all four norbornene compounds showed lower values than 100 ppm, which is considered to have an influence on the environment, indicating that the polar norbornene structure affects the elution.

Simultaneous Determination of Plasticizers in Food Simulants Using GC/MS

  • Park, Na-Young;Yoon, Hae-Jung;Kwak, In-Shin;Jeon, Dae-Hoon;Choi, Hyun-Chul;Eum, Mi-Ok;Kim, Hyung-Il;Sung, Jun-Hyun;Kim, So-Hee;Lee, Young-Ja
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.93-98
    • /
    • 2009
  • Migration levels of plasticizers, di-n-butyl phthalate (DBP), benzyl-butyl phthalate (BBP), di-n-octyl phthalate(DNOP), di-iso-decyl phthalate (DIDP) and di-iso-nonyl phthalate (DINP), di-(2-ethylhexyl) adipate (DEHA), from 46 poly(vinyl chloride) (PVC) wrap films and 54 PVC gaskets into food simulants were determined using gas chromatography/mass spectrometry (GC/MS). The method was validated with limit of detection (LOD) of $0.01{\sim}0.02\;{\mu}g/mL$ for DBP, BBP, DNOP and DEHA, and $2\;{\mu}g/mL$ for DIDP and DINP. The linearity were found to be > 0.99 for all the compounds in concentration range of $0.1{\sim}81.4\;{\mu}g/mL$, and overall recoveries were ranged from 90.4 ~ 99.6%. DBP, BBP, DNOP, DEHA, DIDP and DINP were not detected in food simulants, except 1 wrap sample from which 0.28 and $0.99\;{\mu}g/mL$ of DEHA were detected respectively when tested with 20% ethanol and n-heptane as food simulants. These values were below the regulatory limitation in European Union (EU).

  • PDF

The Monitoring on Plasticizers and Heavy Metals in Teabags (침출용 티백 포장재의 안전성에 관한 연구)

  • Eom, Mi-Ok;Kwak, In-Shin;Kang, Kil-Jin;Jeon, Dae-Hoon;Kim, Hyung-Il;Sung, Jun-Hyun;Choi, Hee-Jung;Lee, Young-Ja
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • Nowadays the teabag is worldwide used for various products including green tea, tea, coffee, etc. since it is convenient for use. In case of outer packaging printed, however, there is a possibility that the plasticizers which is used for improvement in adhesiveness of printing ink may shift to inner tea bag. In this study, in order to monitor residual levels of plasticizers in teabags, we have established the simultaneous analysis method of 9 phthalates and 7 adipates plasticizers using gas chromatography (GC). These compounds were also confirmed using gas chromatography-mass spectrometry (GC-MSD). The recoveries of plasticizers analyzed by GC ranged from 82.7% to 104.6% with coefficient of variation of $0.6\sim2.7%$ and the correlation coefficients of each plasticizer was $0.9991\sim0.9999$. Therefore this simultaneous analysis method was showed excellent reproducibility and linearity. And limit of detection (LOD) and limit of quantitation (LOQ) on individual plasticizer were $0.1\sim3.5\;ppm\;and\;0.3\sim11.5\;ppm$ respectively. When 143 commercial products of teabag were monitored, no plasticizers analysed were detected in filter of teabag products. The migration into $95^{\circ}C$ water as food was also examined and the 16 plasticizers are not detected. In addition we carried out analysis of heavy metals, lead (Pb), cadmium (Cd), arsenic (As) and aluminum (Al) in teabag filters using ICP/AES. $Trace\sim23{\mu}g$ Pb per teabag and $0.6\sim1718{\mu}g$ Al per teabag were detected in materials of samples and Cd and As are detected less than LOQ (0.05 ppm). The migration levels of Pb and Al from teabag filter to $95^{\circ}C$ water were upto $11.5{\mu}g\;and\;20.8{\mu}g$ per teabag, respectively and Cd and As were not detected in exudate water of all samples. Collectively, these results suggest that there is no safety concern from using teabag filter.