• Title/Summary/Keyword: Plastic-house

Search Result 459, Processing Time 0.032 seconds

Effect of Sodium Chloride Containing-Composts on Growth of Lettuce (Lactuca sativa L.) and Chemical Properties of Salt Accumulated Plastic Film House Soils (퇴비중 NaCl 함유량별 시설재배 상추의 생육반응과 토양 화학성 변화)

  • Yang, Jang-Souck;Lee, In-Bog;Kim, Ki-Duck;Cho, Kwang-Rae;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • The raw food waste of Korea contained markedly high sodium chloride and such high sodium chloride concentration in the soil is a factor limiting plant growth and impairing soil physicochemical properties. This study was carried out to assess the effect of NaCl-containing compost on the growth of lettuce(Lactuca satjva L.) and on the soil chemical properties. For the experiment, six treatments applying 0, 0.5, 1, 3, 6, and 9% NaCl-containing composts at the rate of $20Mg\;ha^{-1}$ were conducted established in a greenhouse. Growth measurements, chemical analysis of lettuce foliage, and soil chemical properties after the harvest were investigated. Lettuce yield in the treatments applied to composts over 3% NaCl was gradually reduced and mortality of lettuce as well as Na concent ration of lettuce foliage progressively increased with successively higher NaCl concentration of composts. With an increase of NaCl concentration of composts, the values of ESP and exchangeable sodium concentration in the surface soil were significantly increased. Especially, ESP of surface soil in the treatment incorporated with 9% NaCl-containing compost after the harvest attained by about 15, suggesting that sodification of surface soil under a greenhouse condition can occur when the compost over 9% NaCl is applied to soil. In conclusion, the application of over 3% NaCl-containing compost at the rates of $20Mg\;ha^{-1}$ can cause undesirable influences in plant growth and also the treatments of over 6% NaCl-containing composts can create conspicuous deteriorations in soil chemical properties in the current year.

  • PDF

Effect of Drip Irrigation Level on Soil Salinity and Growth of Broccoli (Brassica oleracea L. var. italica) in Saemangeum Reclaimed Tidal Land (새만금간척지에서 점적관수량이 토양염농도와 녹색꽃양배추의 생육에 미치는 영향)

  • Bae, Huisu;Hwang, Jaebok;Kim, Haksin;Gu, Bonil;Choi, Inbae;Park, Taeseon;Park, Hongkyu;Lee, Suhwan;Oh, Yangyeol;Lee, Sanghun;Lee, Geonhwi
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • The objective of this study was to investigate the effect of drip irrigation level on soil salinity and growth of broccoli (Brassica oleracea L. var. italica) at the 'Saemangeum Reclaimed Tidal Land' from April to June, 2015. Drip irrigation was conducted at 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ level for reduction of resalinization in the plastic vinyl house using 10cm spacing drip irrigation tape. At harvesting stage, the average EC of surface soil was $10.9dS{\cdot}m^{-1}$ for $1.5mm{\cdot}day^{-1}$, $11.5dS{\cdot}m^{-1}$ for $3.0mm{\cdot}day^{-1}$ and $5.1dS{\cdot}m^{-1}$ for $6.0mm{\cdot}day^{-1}$ and was significantly reduced by 52~56% in $6.0mm{\cdot}day^{-1}$ treated plot compared to those in 1.5 and $3.0mm{\cdot}day^{-1}$ plots. The fresh bud weights of 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ treatment plots were 60.9, 129.1 and $371.3g{\cdot}plant^{-1}$, respectively. The estimated soil EC for 50% yield reduction was $7.6dS{\cdot}m^{-1}$ and the desalinization depth by drip irrigation was 30~40cm in soil profile. The total amount of drip irrigation water was estimated to be 422mm and the daily drip irrigation level was $6.0mm{\cdot}day^{-1}$ for the prevention of resalinization during the broccoli growing period at the 'Saemangeum Reclaimed Tidal Land'. Our results suggested that drip irrigation shows effectiveness on the lowering the soil salinity according to the drip irrigation quantity but it needs more research on this study because dynamics of salts in soil can vary with many factors such as soil physico-chemical properties and seasonal climate.

Selection of Non-Perforated Breathable Film to Enhance Storability of Cherry Tomato for Modified Atmosphere Storage at Different Temperatures (방울토마토의 MA 저장성 향상을 위한 비천공 breathable 필름 구명)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Lee, Han Jong;Lee, Kyoung Soo;Hong, Sung Mi;Jeong, Min Jae;Kim, Il-Seop;Hong, Soon-Kwan;Choi, In-Lee;Baek, Jun Pill;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • This study was conducted to find out the appropriate packaging materials to extend the storability and maintain the quality of cherry tomato for modified atmosphere (MA) storage. Tomatoes were grown by hydroponic at a plastic house in Gangwon Province. Light red maturity stage tomatoes were harvested and packed with MA condition (10,000; 20,000; 40,000; 60,000; 80,000; and $100,000cc/m^2.day.atm$ $O_2$ permeability film) and perforated film to store at $5^{\circ}C$, $11^{\circ}C$ and $24^{\circ}C$. The fresh weight loss was less than 0.6% in all non-perforated breathable films at $^5{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, but perforated film had less than 2.93% at $5^{\circ}C$, 13.29% at $11^{\circ}C$ and 27.24% at $24^{\circ}C$. The 20,000cc at $5^{\circ}C$ and $11^{\circ}C$, and the 40,000cc film at $24^{\circ}C$ balanced optimum carbon dioxide and oxygen concentration in the package to maintain quality. The 10,000cc film was appeared the significantly highest ethylene concentration at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, this film had the lowest $O_2$ permeability. Visual quality, firmness, and soluble solids were maintained in 20,000cc films both at $5^{\circ}C$ and $11^{\circ}C$, the 40,000cc film at $24^{\circ}C$. There was no any trend in titratable acidity and vitamin C content of treated packed film types and temperatures at cherry tomatoes packages. Therefore, the appropriate MA condition for $5^{\circ}C$ and $11^{\circ}C$ is $20,000cc/m^2.day.atm$ $O_2$ permeability film; for $24^{\circ}C$ it is $40,000cc/m^2.day.atm$ $O_2$ permeability film because those films extended the storability through the firmness, soluble solids as well as visual quality.

Screening Methods for Resistant Cucumber Cultivars against Cucumber Scab Caused by Cladosporium cucumerinum Using Cucumber Fruits and Seedlings (오이 유묘와 과실을 활용한 검은별무늬병에 대한 저항성 품종 검정 방법)

  • Park, So-Hyang;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Park, Jong-Won;Jee, Hyeong-Jin;Kim, Seok-Cheol;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • This study was conducted to elucidate the cultural and pathogenic characteristics of Cladosporium cucumerinum PT1 and resistance of 81 commercial cucumbers (Cucumis sativus). Cucumber leaves and fruits appeared as scab were collected from a plastic film house located in Pyeongtaek, Gyeonggi-province, Korea in late March, 2015. A casual fungus was isolated from the diseased fruits on potato dextrose agar and it was identified as C. cucumerinum PT1 based on the morphological characteristics. To find out the effect of wounding and fruit size on the development of cucumber scab, small (<10 cm long), medium (10 to 20 cm long), and large (>20 cm long, commercially mature fruit) size cucumber fruits were harvested, C. cucumerinum PT1 pathogens were inoculated with a single droplet of suspension ($1{\times}10^5$ spores/ml) on wounded or unwounded cucumber fruits. Small fruits were completely damaged with showing severe water-soaking symptoms and fast pathogen growth regardless of wounded or unwounded. Meanwhile slight water-soaking symptoms on medium and large size fruits occurred and disease development into plant tissues was observed only on wounded fruits. Disease resistance of 81 commercial cucumber cultivars was evaluated on third-stage seedlings and small fruits by inoculating suspension ($1{\times}10^5$ spores/ml) of C. cucumerinum PT1. As a result, mini and pickling cultivar groups were resistant, 'Cheoeumcheoreom' cultivar was symptomless and the other cultivars were resistant to medium resistant. On the other hand, most of cucumber cultivars belonging to the other groups were susceptible. Disease resistance of cucumber against cucumber scab was significantly different among cultivars and a few cucumber cultivars showed different disease resistant responses to two bioassay methods using seedlings and small fruits. Therefore, to screen scab resistance in cucumber, a test using both fruits and seedlings is advisable. We think that the selected resistant cultivars can be used to control cucumber scab effectively under the farmhouse condition.

Effect of Sodiun Hypochlorite Pretreatment, Light Intensity and Depth of Soil Covering on Germination of Cattail(Typha spp.) Seeds (Sodium Hypochlorite 처리와 광도 및 복토 깊이의 차이가 부들의 종자 발아에 미치는 영향)

  • Kim Young-Ju;Heo Jin-Ah;Hwang Yong-Soo;Ku Ja-Hyeong
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • The effect of sodium hypochlorite treatment on the germination of cattail (Typha spp.) seeds was investigated in growth chambers maintained on a 14-h photoperiod with various temperatures and light intensities. Germination rates of seeds were, in general, enhanced by the increase of light intensity and temperature regardless of cattail species. Seeds of T. oreientalis had 4.3, 13.0 and $7.3\%$ germination at temperatures of 20, 25 and $30^{circ}$C, respectively, under light intensity of 7.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. T. angustata showed higher germination rate, thus, 10.7, 22.7 and $50.7\%$ under same temperature and light environment. Under high light intensity of 79.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the germination rates of T. oreintalis and T angustata were $78.3\%$ and $88.7\%$ at $30^{circ}$C, respectively. Scarification of seeds with NaOC1 ($4\%$, available chlorine) increased germination rate in both species, especially even at low temperature of $20^{circ}$C. Germination speed was also enhanced by NaOC1 treatment. High light intensity further increased the germination rate. When NaOC1 treated seeds were sowed on the soil surface in plastic house, the seedling emergence was nearly $100\%$. Untreated seeds of T. oreintalis and T. angustara showed 40 and $50\%$, respectively, in germination under same condition. However, when the depth of soil covering was over 1.0 cm, seedling emergence was retarded more than 1 month. On the process of seedling development, emergence of mesocoty1 occurred firstly and after than primary root and first leaf were developed on the end of elongated mesocotyl. These results suggest that the promotion of seed germination by NaOC1 pretreament may be induced from the increase of light absorptivity as well as water permeability through scarifying and bleaching the seed coat.

Effects of Cutting Time, Auxin Treatment, and Cutting Position on Rooting of the Green-wood Cuttings and Growth Characteristics of Transplanted Cuttings in the Adult Prunus yedoensis (왕벚나무 성목 녹지삽목에서 삽목시기, 옥신처리 및 삽수부위가 발근에 미치는 영향과 이식 삽목묘의 생육특성)

  • Kim, Chang-Soo;Kim, Zin-Suh
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • This study was conducted to develop an efficient mass propagation method for the mature $Prunus$ $yedoensis$ Matsumura (43 to 58 years old). Cutting was conducted depending on cutting time, auxin treatments (IBA and NAA treatments mixed with talc powder), and cuttings position on shoots in a plastic house equipped with a fog system without heating. Rooted cuttings were transplanted to a nursery bed, and their growth characteristics were investigated in order to check whether the cuttings are successful or not for roadside tree planting. The average rooting rate was highly significant ($P$ < 0.0001) in all treatments: cutting on June 1st (61.4%) was more than two times greater in rooting rate than that on August 1st (23.6%); IBA 1,000 $mg{\cdot}L^{-1}$ (90.8%) and IBA 500 $mg{\cdot}L^{-1}$ (89.2%) showed much greater rooting rates than those of the other treatments; upper part of the cuttings treated with IBA 1,000 $mg{\cdot}L^{-1}$ showed the highest rooting rate, 96.7%. The interactions among treatments in the average rooting rate were also significant. There were significant differences ($P$ < 0.0001) among the auxin treatments in the survival rate of leafed cuttings transplanted to a nursery bed. The average survival rate was 46.5%, and IBA 1,000 $mg{\cdot}L^{-1}$ treatment was the highest in leafed cuttings 79.2%, but most of leafless cuttings were dead. There were significant differences ($P$ < 0.0001) among the cuttings, grafts, and in the seedlings height, diameter at root collar, the number of roots, branches, and leaves, etc., and the cuttings was the best. We can expect a possibility of mass propagation of improved $P.$ $yedoensis$ Matsumura and a high planting survival rate through the transplanting of cuttings to a nursery bed in which the cuttings should be the following conditions: cutting in June to July, use of the upper part of cuttings, IBA treatment, and rooting in August in a cutting-greenhouse equipped with a fog system.

Effects of No-Tillage and Split Irrigation on the growth of Pepper Organically Cultivated under Plastic Film Greenhouse Condition (무경운과 분할관수가 시설 유기재배 고추 생육에 미치는 영향)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.781-796
    • /
    • 2015
  • This study was carried out to investigate the effect of no-tillage and split irrigation on the growth of pepper plant under green house condition in Jeonnam province. Moisture content of soil at whole quantity irrigation in tillage was increased rapidly regardless of soil depth for initial irrigation and then was decreased continuously until next irrigation. Deviation of moisture content in soil was decreased with increasing depth of soil. Moisture contents of top soil and subsoil (20 cm) at whole quantity irrigation in no-tillage were increased with sunrise, and then decreased with sunset. Moisture contents of top soil in tillage, and top soil and subsoil (20 cm) in no-tillage at half quantity irrigation indicated a cyclic diurnal variation by evapotranspiration. Salinity of soil was increased after initial irrigation and then was decreased continuously until next irrigation. With increasing depth of soil, increases of salinity in soil was delayed. Salinity of top soil in no-tillage was increased between AM 11:00 and AM 12:00, and then showed the highest level between PM 2:00 and PM 6:00 on a cyclic diurnal variation by evapotranspiration. Salinity of subsoil (30 cm) in no-tillage was not measured a cyclic diurnal variation. Moisture content and salinity of soil was positive correlation regardless of tillage and no-tillage cultivation. Growth of pepper in no-tillage cultivation was higher than that in tillage cultivation. Main branch Length and stem diameter of half quantity irrigation plot was higher than that of whole quantity irrigation plot regardless of tillage and no-tillage cultivation. After harvesting, the number of pepper fruits of half quantity irrigation plot was increased remarkably by 49% and 47%, in tillage and no-tillage cultivation, respectively. Pepper yield of no-tillage cultivation plot was higher by 8% than that of tillage cultivation plot. Pepper yield of half quantity irrigation plot was increased remarkably by 36% and 39%, in tillage and no-tillage cultivation, respectively.

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

Growth Performances and Physiological Responses of Quercus spp. and Fraxinus rhynchophylla Subjected to Different Soil Moisture Regimes and Nutrition Levels (수분(水分) 및 양료(養料) 처리(處理)에 따른 참나무류와 물푸레나무의 생장 및 생리 반응)

  • Kwon, Ki Won;Lee, Jeoung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.164-174
    • /
    • 1994
  • Temporal changes in growth performances, chlorophyll contents, and tissue water relations for determining their physiological responses of five economic tree species subjected to chronic water and nutrition stresses were investigated with containerized seedlings grown in different soil moisture regimes and nutrition levels. Seedlings of Quercus acutissima, Q. variabilis, Q. mongolica, Q. serrata, and Fraxinus rhynchophylla were propagated in plastic pots(I.D. $16cm{\times}Depth$ 16cm) for the experiments. The seedlings were subjected to two soil moisture regimes of dry and wet soils and two nutrition levels of fertilization with N+P+K and no fertilization through the growing season from May to September in a green house. For the purpose of analyzing their responses to the environmental stresses, seedling heights and root collar diameters, chlorophyll contents, and P-V curve parameters of the seedlings were measured in May, July, and September. The environmental stresses coming from moisture and nutrient deficits affected the growth performances of seedlings variously among species and among different growing periods, as well as between height and basal diameter growth of seedlings. The growth performances of Q. acutissima were influenced sensitively on the stresses, but those of Q. mongolica less influenced in comparison with other species. Chlorophyll contents were generally higher in Quercus spp. than F. rhynchophylla through the growing season. The chlorophyll contents changed by species and by treatment through the season within ranges of 0.14~1.96 mg/g dry wt. of chlorophyll a and within 0.16~1.79mg/g dry wt. of chlorophyll b, respectively. But the contents seemed to be decreased gradually through the chronic environmental stresses and leaf senescence. The osmotic potential at full turgor(${\Psi}{{\pi}o}$) and turgor loss point(${\Psi}{\pi}p$) had temporarily declined up to 3 to 5bars from -7.0~-12.4bars in May to -10.2~-17.5bars in September and up to 5 to 6bars from -7.6~-14.2bars in May to -12.9~-20.4bars in September, respectively, with some exceptions. The values of ${\Psi}{\pi}p$ were generally high in F. rhynchophylla in May and July, but high in Q. serrata in September. Relative water contents at turgor loss point(RWCp) were generally high in F. rhynchophylla, but the temporal changes of RWCp were quite and frequently different among species and among treatment.

  • PDF

Effects of green manures in organic vegetable production (유기농 채소생산을 위한 녹비작물 도입효과)

  • Lee, Sang-Min;Lee, Y.;Yun, H.B.;Sung, J.K.;Lee, Y.H.;Lee, S.B.;Choi, K.J.;Kim, K.H.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.77-101
    • /
    • 2009
  • Organic farming in Korea has mainly focused on producing vegetables in plastic film house and cereals in paddy field. For high productivity of vegetables and cereals, most Korean farmers have not applied crop rotation in the cropping system. Thus, this study was carried out to evaluate the effects of crop rotation on the yield of red pepper and green onion, the changes in soil fertility and the potential as green manure of rye and hairy vetch. Rye and hairy vetch were cultivated for winter season every year, and directly incorporated into the soil. The yield of red pepper fruits in organic farming using crop rotation (OFCR) decreased 23 to 36% compared with conventional farming system (CFS). Whereas, green onion showed the increased yield of about 13%. In OFCR, total carbon content of soil was higher, however available phosphate content lower than conventional farming. As a result of measuring the bulk density of soil, OFCR and CFS were 1.26 to $1.35Mg/m^3$ and 1.37 to $1.42Mg/m^3$, respectively. Carbon and nitrogen contents of microbial biomass in OFCR were obviously higher compared with the CFS. In the plot cultivated rye for winter season, the weed germination was strongly reduced (about 52 %). Balance of macro nutrient elements, nitrogen and phosphate, in the application of rye and hairy vetch had a minus value. For potassium, the output value was higher than the input one, therefore organic farming under red pepper-rye or hairy vetch systems requires applying additional potassium input. Also, we selected two hairy vetch varieties of cv. Hungvillosa and Ostsaat which can be adapt at Korea climate. In order to estimate a yield of green manures, the weight of shoot and root was measured. The ratio of shoot and root between rye and hairy vetch showed 0.88 and 1.91, respectively. The potential levels of nitrogen, phosphate and potassium which could be supplied from rye were 7.7, 7.8 and 21.9 kg/10a and from hairy vetch were 17.0, 8.6 and 22.9 kg/10a, respectively. So we recommend that cultivating hairy vetch, as a nutrient supplier, and rye, as an amendment to enhance the soil physical property, for winter season be practical method in Korea organic farming system.

  • PDF