• Title/Summary/Keyword: Plastic-creep analogy

Search Result 3, Processing Time 0.021 seconds

Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor (탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측)

  • Seo, Jun-Min;Youn, Gyo-Geun;Lee, Hyun-Jae;Oh, Young-Jin;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

Effect of Creep Mismatch Factor on Stress Redistribution in Welded Branch (분기관 용접부의 크리프 특성 불균일이 응력 재분배에 미치는 영향)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Yoo, Kee-Bong;Nikbin, Kamran;Dean, Dave
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.293-298
    • /
    • 2008
  • This paper attempts to quantify the effect of mismatch in creep properties on steady-state stress distributions for a welded branch vessel. A particular geometry for the branch vessel is chosen. The vessel is modeled by only two materials, the base and weld metal. Idealized power law creep laws with the same creep exponents are assumed for base and weld metals. A mismatch factor is introduced, as a function of the creep constant and exponent. Steady-state stress distributions within the weld metal, resulting from threedimensional, elastic-creep finite element (FE) analyses, are then characterized by the mismatch factor. We can find that average stresses in the weld can be characterized by the mis-match factor. And there is an analogy between elastic-creep and elastic-perfectly plastic.

  • PDF

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures (이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법)

  • Lee, Kuk-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2012
  • This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.