• Title/Summary/Keyword: Plastic substrate

Search Result 337, Processing Time 0.024 seconds

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

Development of a Chip Bonding Technology for Plastic Film LCDs

  • Park, S.K.;Han, J.I.;Kim, W.K.;Kwak, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.89-90
    • /
    • 2000
  • A new technology realizing interconnection between Plastic Film LCDs panel and a driving circuit was developed under the processing condition of low temperature and pressure with ACFs developed for Plastic Film LCDs. The conduction failure of interconnection of the two resulted from elasticity, low thermal resistance and high thermal expansion of plastic substrates. Conductive particles with elasticity similar to the plastic substrate did not damaged a ITO electrode on plastic substrates, and low temperature and pressure process also did not deform the surface of plastic substrates. As a result highly reliable interconnection with minimum contact resistance was accomplished.

  • PDF

Manufacturing of Barix coated plastic barrier films; R2R vs. Batch

  • Kapoor, S.;Moro, L.;Chu, X.;Rutherford, N.;Ramos, T.;Visser, R.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1722-1725
    • /
    • 2007
  • We will discuss and compare the different ways to manufacture high performance Barix coated barrier films as a substrate for displays: R2R vs Batch. It will be shown that the barrier performance of the Barix coating on plastic can be as good as on glass substrates. More then 1000 hrs of testing at 60C/90RH can be passed without degradation of Ca samples

  • PDF

The Effect of H content in Si Precursor on the Performance of Poly-Si Crystallized by Pulsed YAG2${\omega}$ Laser on Soft Substrate

  • Li, Juan;Ying, Yao;Meng, Zhiguo;Chunya, Wu;Xiong, Shaozhen;Kwok, Hoi-Sing
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1604-1607
    • /
    • 2009
  • YAG laser crystallization of Si-based thin film deposited on plastic substrate has been studied. The Si-based thin films as crystallization precursor are with varied hydrogen (H) content. The effect of the H content on the crystallinity of the resulted poly-Si film has been investigated. The experimental results of the poly-Si crystallized by doublefrequency YAG laser shows that the initial dehydrogenation process could be left out if ${\mu}c$-Si was adopted as the crystallization precursor. The YAG laser annealing condition on plastic substrate and the crystallization results have been discussed in the paper.

  • PDF

A Study on the ITO Thin Films on Plastic Substrate Using by Powdery Targ (분말 타겟을 이용한 플라스틱 기판 상의 ITO 박막 제조에 관한 연구)

  • Lee, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1683-1685
    • /
    • 1999
  • ITO films on plastic substrate were prepared by DC magnetron sputtering method using powdery target and their properties were investigated as a function of the deposition conditions. As the sputtering power and total pressure were higher, the resistivity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the total pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with $8{\times}10^{-3}{\Omega}-cm$ of resistivity and 80% of transmittance at optimal conditions.

  • PDF

A new crystallization method using a patterned $CeO_2$ seed layer on the plastic substrate

  • Shim, Myung-Suk;Kim, Do-Young;Seo, Chang-Ki;Yi, Jun-Sin;Park, Young-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1007-1010
    • /
    • 2004
  • We report crystallization of a-Si using XeCl excimer laser annealing [1] on the plastic substrate. We tried to obtain higher crystallinity as the effect of $CeO_2$ seed layer patterned. Also, we tried to control the direction of crystallization growth of silicon layer for lateral growth as the type of $CeO_2$ pattern. This crystallization method plays an important role in low temperature poly-Si (LTPS) [2] process and flexible display.

  • PDF

A study on Electrical and Optical Properties of Organic Electroluminescent Devices using various Substrates (기판 종류에 따른 유기전기발광소자의 전기적.광학적 특성에 관한 연구)

  • Cho, Jae-Young;Kim, Jung-Yeoun;Kim, Jong-Jun;Oh, Hwan-Sool
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, three types of organic electroluminescent devices(OELD) were fabricated on mechanically flexible plastic substrate by using vacuum deposition method. The devices consist of a hole transporting material such as TPD, a light-emitting material such as Alq$\sub$3/ and an electron transporting material, blocking material such as PBD. Electrical and optical properties of these OELDs were measured. This paper shows that organic small molecules based on OELD can be successfully deposited on a flexible plastic substrate. This points open the potential for low cost mass production of flexib]e displays, including roll to roll processing.

  • PDF

The Wear Resistance Behavior of Functional Thermal sprayed $TiO_2$ Photocatalytic Coatings on Bio-degradable Plastic (고기능 $TiO_2$ 광촉매 용사피막의 내마모성 거동에 관한 연구)

  • ;;Akira Ohmori;Takahiro Nakatsuji
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.314-315
    • /
    • 2004
  • As environmental issue threatens to be aggravated, applications of bio-degradable plastic (Polybutylene Succinate:PBS) tend to be increased. However, improvement of mechanical characteristics of PBS is indispensable for further widespread actual applications. Therefore, in order to produce further functional P8S with improved mechanical characteristics, TiO$_2$ coatings on PBS substrate were prepared under various spraying conditions using plasma and HVOF spraying techniques. The effects of thermal spraying methods and spraying parameters on coating properties could be confirmed. Moreover, wear behavior for TiO$_2$ coatings on PBS substrate has been also reviewed and characterized.

  • PDF

Fabrication of 7" WVGA flexible electronic paper display by using toner particles

  • Ryu, Gi-Seong;Lee, Chang-Bin;Han, Sang-Kwuon;Chun, Seung-Hee;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.364-366
    • /
    • 2009
  • We successfully fabricated flexible electronic paper display (EPD) by using toner particles on plastic (PC) substrate. It has high resolution (WVGA : 800 ${\times}$ 480) and 7 inch diagonal viewable image size. The response time was about 0.25 msec at 90 V, a contrast ratio of about 2, a driving voltage of 60 V which we successfully demonstrated to display several images at.

  • PDF