• Title/Summary/Keyword: Plastic shrinkage crack

Search Result 53, Processing Time 0.025 seconds

A Study on the Practicality of Fiber Reinforced Concrete to Control Plastic Shrinkage Crack (균열제어를 위한 섬유보강 콘크리트의 실용화 연구)

  • Jung, Yang-Hee;Choi, Il-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • The purpose of this study is to suggest a reference for an extensive evaluation about effectiveness of four types of fibers to control plastic shrinkage crack of concrete. So in this study for the practical use in construction field, the plastic shrinkage cracks shown from four types of concrete reinforced by mixing four types of fibers are quantitatively evaluated in points of the workability and compressive strength. Test showed that the mixing of Cl, N, P fibers except for C2 fibers decreased fluidity of fresh concrete. Compressive strengths of four types specimens were similar. Plastic shrinkage cracks were reduced by mixing each fiber, especially C2 fibers was very effective to prevent the plastic shrinkage crack. Therefore the reinforced concrete mixed with C2 fibers exhibited superior mechanical performance than the others.

  • PDF

A Study on the Influence Factors on Crack Properties of CFRD Face Slab Concrete (CFRD 차수벽 콘크리트의 균열 특성에 미치는 각종 영향요인에 관한 연구)

  • 최세진;임정열;김완영;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.109-117
    • /
    • 2000
  • CFRD(Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, plastic shrinkage and bad compaction etc. Because of these cracks of concrete induce structural problem and decrease durability of dam, it is need to reduce crack of face slab concrete. This is an experimental study to analyze the influence factors on crack properties of CFRD face slab concrete. For this purpose, various mix proportion of CFRD face slab concrete and concrete using PPF(polypropylene fiber0 and fly ash was selected. And tests for drying shrinkage, bonding strength, water permeability and plastic shrinkage were performed, and then CFRD D and PPC of those mix proportion were placed in CFRD field. According to test results, it was found that the bonding strength of C1(compact sufficiently) was higher about 10~20% than that of C2(compact insufficiently). And the engineering properties of PPC(concrete using PPF) and FAC(concrete using fly ash) were better than those of the others ; the permeability of PPC and FAC after 8 weeks curing was little lower than that of CFRD D, and plastic shrinkage crack of PPC and FAC was lower 40~60% than crack of CFRD D.

Properties of Plastic Shrinkage Crack Occurrence on The LMC Bridge Deck Overlays (LMC(Latex Modified Concrete) 교면포장에서의 소성수축 균열발생 특성)

  • Park, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, bridge deck slabs, and bridge deck pavement. LMC(Latex Modified Concrete) be used mainly for bridge deck overlays, so occurrence possibility of plastic shrinkage cracking is very high. But LMC is form a close-packed layer of polymer particles in very early time from the time of adds the latex and water. So plastic shrinkage cracking compare with normal concrete is not occur at final setting time. Results indicates that LMC is advantage to prevent occurrence of plastic shrinkage crack and it's possible co construction for bridge deck overlay effectively.

  • PDF

An Experimental Study on the Control Property of PlasticShrinkage Crack for CFRD Face Slab Concrere (CFRD 차부벽콘크리트의 수성수축균열 제어특성에 관한 실험적 연구)

  • 김완영;최세진;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.118-121
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the Control Property of Plastic Shrinkage Crack for CFRD face slab concrete. For this purpose, it was investigated and analyzed the engineering properties of plain concrete and using admixtures (polypropylene fiber, fly-ash) according to test result As the result, it was found that crack width and area of concrete using admixtures less than of plain concrete.

  • PDF

Experimental Study for Plastic Shrinkage Cracking of Cellulose Fiber Reinforced Concrete (셀룰로우스섬유보강 콘크리트의 소성수축 균열에 관한 실험적 연구)

  • 원종필;박찬기;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.319-323
    • /
    • 1998
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, slabs for parking garages, and walls. One of the methods to reduce the adverse effect of plastic shrinkage cracking is to reinforced concrete with short randomly distributed fibers. The contribution of cellulose fiber to the plastic shrinkage crack reduction potential of cement composites and its evaluation are presented in this paper. The effects of differing amounts of fibers(0.9kg/㎥, 1.3kg/㎥, 1.5kg/㎥) were studied. The results of tests of the cellulose fiber reinforced concrete were compared with plain concrete and polypropylene fiber reinforced concrete. Results indicated that cellulose fiber reinforcement showed an ability to reduce the total area and maximum crack width significantly(as compared to plain concreted to plain concrete and polypropylene fiber concrete).

  • PDF

Plastic shrinkage Cracking of Hydrophilic Fiber Reinforced Cement Composites (친수성섬유보강 시멘트복합체의 소성수축균열제어 특성)

  • Won, Jong-Pil;Hwang, Keum-Sic;Yoon, Jong-Hwan;Jang, Pil-Sung;Kim, Myung-Koun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.375-378
    • /
    • 2003
  • Plastic shrinkage cracking occurs at the exposed surfaces of freshly placed concrete due to consolidation of the concrete mass and rapid evaporation of water from the surface. This so-called shrinkage cracking is a major concern for concrete, especially for flat structural such as pavement, slabs for industrial factories and walls. This study has been performed to obtain the plastic shrinkage properties of hydrophilic fiber reinforced mortar and concrete. The results of tests of the hydrophilic fibers were compared with plain and polypropylene fibers. Test results indicated that hydrophilic poly vinylalcohol fiber reinforcement showed an ability to reduce the total crack area and maximum crack width significantly (as compared to plain and polypropylene fiber reinforcement).

  • PDF

Control of Shrinkage Cracking of Cement Composites with Different Length Mixture of PVA Fibers (서로 다른 길이의 PVA 섬유 혼합에 따른 시멘트 복합체의 균열제어 특성)

  • Won, Jong-Pil;Kim, Myung-Kyun;Park, Chan-Gi;Kim, Wan-Young;Park, Kyoung-Hoon;Jang, Chang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.405-408
    • /
    • 2006
  • The purpose of this study was to determine the optimum length distribution of hybrid PVA(Poly vinyl alcohol) fiber. To produce blended PVA fiber length, first the length distribution of PVA fiber in the cement composites were identified in an experimental study based on simplex lattice design. Among the different length distributions investigated, fiber length was found to have statistically significant effect on plastic shrinkage cracking of cement composites. Subsequently, Complex analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected fiber length distribution based on plastic shrinkage crack. The optimum blended PVA length ratio was 0.0146% 4mm fiber, 0.0060% 6-mm fiber, 0.0285% 8-mm fiber, and 0.0209% 12-mm fiber.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

Effect of the Nylon and Cellulose Fiber Contents on the Mechanical Properties of the Concrete (나일론 및 셀룰로스 섬유 혼입률 변화가 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Cheon-Goo;Han, Min-Cheol;Shin, Hyun-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.83-90
    • /
    • 2007
  • This study is to investigate the effects of nylon(NY) and cellulose(CEL) fiber contents on the mechanical properties of the concrete. The results were summarized as following. Test showed that increase of NY and CEL fiber contents decreased fluidity of fresh concrete, so the loss of the fluidity would be considered when they were over added. Air contents were slight increased, but they satisfied the target air content. Bleeding capacity of concrete containing fiber significantly was declined. In addition, concrete containing higher amounts of fiber retarded setting time remarkably. Plastic shrinkage crack was reduced with the use of fiber due to increasing fiber contents and changing fiber classes, and NY fibers to prevent the plastic shrinkage crack effectively. Compressive and tensile strength of almost specimens were increased when air contents of the fresh concrete were fixed according to fiber contents, and flexural strength was increased according to fiber contents. For the impact strength of specimens, the specimen containing $0.6kg/m^3$ of NY fibers, showed the most favorable impact strength, The fiber reinforced concrete using NY fibers exhibited superior mechanical performance, and it was considered that $0.6kg/m^3$ of was desirable as the most favorable adding amount.