• 제목/요약/키워드: Plastic plate heat exchanger

검색결과 12건 처리시간 0.029초

플라스틱 판형 열교환기의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Plastic Plate Heat Exchanger)

  • 유성연;정민호;김기형;이제묘
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

플라스틱 판형 열교환기의 성능에 영향을 미치는 인자에 관한 연구 (A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger)

  • 유성연;정민호;이용문
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.839-848
    • /
    • 2005
  • Plastic plate heat exchangers have many advantages over the conventional heat exchangers such as aluminum plate heat exchangers, rotary wheel heat exchangers and heat pipe heat exchangers which have been used for ventilation heat recovery in the air-conditioning systems. In the present study, pressure drop and heat transfer characteristics of plastic plate heat exchangers are investigated for various design parameters and operating conditions which affect the performance of the plastic plate heat exchangers. In flat plate type heat exchanger, material thickness and channel height of heat exchanger are considered, and corrugate size and heat transfer area are considered in case of corrugate type heat exchanger. Pressure drop and effectiveness of the corrugate type heat exchanger increase as the corrugate size decreases.

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.

플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구 (A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger)

  • 정민호;유성연;한규현;윤홍익
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF

플라스틱 코팅 알루미늄 판형 열교환기의 성능에 관한 수치해석적 연구 (A Numerical Study on the Performance of Plastic Coated Aluminium Plate Heat Exchanger)

  • 최근호;김영일;김명수
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the preliminary thermal performance of a plastic coated aluminum material(PCAM) plate heat exchanger. Plastic coating which has high corrosion resistivity and thermal conductivity can overcome corrosive weakness of aluminum material. The heat exchangers are modeled for STS316, Titanium and PCAM materials, and analyzed numerically using HTRI and ANSYS Fluent CFD softwares. The results show that PCAM heat exchanger is superior in heat transfer performance compared to existing materials. For chevron angle of $60^{\circ}$, thermal performances of Titanium and PCAM are higher by 12.2% and 48.9% when compared to STS316, respectively.

플라스틱 판형 열교환기의 와류발생기에 관한 연구 (A Study on the Vortex Generators of Plastic Plate Heat Exchangers)

  • 오윤영;유성연;고성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.107-110
    • /
    • 2002
  • The present study deals with CFD analysis of 'The vortex generators on plastic plate heat exchanger'. When a vortex generator is placed on the heat transfer surface, the flow gets more complex because it entails complicated three-dimensional flows such as separation, reattachment, and recirculation. CFX-5.4, a commercial code utilizing unstructured mesh, has been used as a computational method for solving RANS(Reynolds-Averaged Wavier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. In addition, those computational analyses were implemented under various conditions , with or without the vortex generator between two plates, the number, form and the size of vortex generator, and different attack of angle. From the calculated temperature, velocity and pressure distribution, vorticity, wall heat flux and so on under those conditions, this study shows the effect of vortex on heat transfer.

  • PDF

Characteristic of Frost Formed on Thermally Conductive Plain Plastic Plate

  • Lee Jang-Seok;Lee Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.138-144
    • /
    • 2005
  • In order to select a new material for a heat exchanger, the frosting behavior of a thermally conductive plastic based on PBT was compared to the frosting behavior of aluminum and three types of plastics based on PTFE. The frosting behavior on the 1 mm thick PBT specimen was similar to that of the aluminum specimen but not that of the pure PTFE specimen. The properties of the frost formed on the specimens were affected by both the thermal conductivity and surface characteristics of the materials. The heat and mass transfer rates of the thermally conductive plastic were almost equivalent to those of the aluminum specimen.

타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가 (Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding)

  • 조평석;윤창석;황효운;이동근
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.

고속 Tube Expander의 동적 모델링 및 해석 (Analysis and Dynamic Modeling of a High-speed Tube Expander)

  • 김재량;정원지;김수태;최욱환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.401-411
    • /
    • 2003
  • Tube expanding process is for combining a heat-sink plate with hair-pins (Cu-tube) through plastic deformation. The two parts, i. e. , heat-sink plate and hair-pins are they components of a heat-exchanger for an air conditioner. This paper presents the analysis and dynamic modeling of a high-speed tube expander which integrates transfer of parts, fixing of parts, and tube expanding into one process. The 3-dimensional modeling of all the parts for the tube-expander was constructed using CATIA$\circledR$. then the CATIA$\circledR$ models are transferred into visuaINastran$\circledR$ to execute the 3-dimensional animation for checking prescribed cycle-time. The technique presented in this paper has been shown to be effective as a priori tool for verifying the design of a high-speed tube expander.

  • PDF