• 제목/요약/키워드: Plastic motor housing

검색결과 6건 처리시간 0.017초

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

자동차 부품용 무도장 메탈릭 플라스틱 소재 개발 (Development of Paint-free Metallic Plastic Material for Automotive Parts)

  • 최민진;조정민;최영호;최민호;이춘수;성한기;이경실;박기훈;황세종
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.295-299
    • /
    • 2022
  • 본 논문에서는 범퍼 스키드 플레이트 및 아웃사이드미러 하우징 부품에 적용되는 polypropylene (PP)와 acrylonitrile styrene acrylate (ASA) 소재를 활용하여 무도장 메탈릭 소재 구현에 대해 연구하였다. 금속 효과를 극대화하기 위해 알루미늄 입자의 종류, 크기, 함량을 최적화하였고 웰드 라인을 은폐하기 위해 종횡비가 상이한 하이브리드 알루미늄 입자를 사용하였다. 또한 부품 표면에 발생되는 플로우 마크를 개선하기 위해 유동성을 제어하였으며 사출 해석을 수행하였다.

연료전지 자동차용 TMS 히터 개발 (Development of Thermal Management System Heater for Fuel Cell Vehicles)

  • 한수동;김성균;김치명;박용선;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술 (Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology)

  • 장인성;조용준;박현성;소득영
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Metal Cover에 의한 EMC 분석 및 Noise 저감 방법 (The Effect of EMC by Metal Cover and Noise Reduction Method)

  • 윤상원;박철의;이찬호;김세현;양만영;김동식;유지윤
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.143-147
    • /
    • 2014
  • The ECU which is operating inductive actuator like motor or solenoid should be designed with considering the heat removal performance and the EMC performance. In most cases, these two performances are trade-off. Especially, the metal cover with plastic housing for improving heat removal performance can affect EMC performance by coupling the noise source to harness cable and connector. Therefore, after analyzing the EMC effectiveness of the metal cover, countermeasures for EMC noise reduction should be established. In this paper, by simulating and testing of AHB Gen3 ECU, the influence of the metal cover to EMC performance is analyzed. And based on this result, we propose solutions for EMC noise reduction.

EPS 감속 모터 개발 (The Development of Decelerating Motor of Electronic Power Steering)

  • 이정익
    • 한국융합학회논문지
    • /
    • 제2권2호
    • /
    • pp.27-34
    • /
    • 2011
  • 본 연구는 호빙 가공공정 없이 워엄 휠 기어 형상을 만들기 위한 워엄 휠의 개발을 위한 제품을 만드는 것이다. 호빙 가공 공정이 없기 때문에, 증가된 생산성과 등가의 품질을 가지는 플라스틱 워엄 휠이 결국 만들어지게 된다. 그 결과, 이 제품은 현대 모비스, 만도, TRW, KOYO/NSK/Showa(Japan), Delphai(Amercia)에 판매 될 것이다. 핵심 기술 및 전략은 다음과 같다. 워엄 휠의 성형을 위한 기술 보호는 최근 "헬리컬 기어(No. 10-2008-0105908) 성형"이 특허 공정으로 되어 있다. 나아가, "보스 삽입을 위한 위치 결정을 위한 성형 시스템"을 위한 특허 절차가 준비 중이다. 기어 기계가공 절차 없이 호빙 머신에 기어 성형 절차로서, 무엇보다 먼저, 기어를 만드는 코어 개발 기술이 주된 주제이다. 따라서, 코어 및 성형 기초가 초기 순서로 개발되지 않아서, 현재 개발되는 워엄 휠의 경우, 기어는 이차적으로 호빙 M/C로 기계가공 된다. 최종적으로는, 성형 기초 구조체를 위한 특허가 본 연구결과로 만들어질 예정이다.