• 제목/요약/키워드: Plastic model

검색결과 2,254건 처리시간 0.028초

The effects of optimizing blood inflow in the pedicle on perforator flap survival: A pilot study in a rat model

  • Olariu, Radu;Moser, Helen Laura;Lese, Ioana;Sabau, Dan;Georgescu, Alexandru Valentin;Grobbelaar, Adriaan Ockert;Constantinescu, Mihai Adrian
    • Archives of Plastic Surgery
    • /
    • 제47권3호
    • /
    • pp.209-216
    • /
    • 2020
  • Background Perforator flaps have led to a revolution in reconstructive surgery by reducing donor site morbidity. However, many surgeons have witnessed partial flap necrosis. Experimental methods to increase inflow have relied on adding a separate pedicle to the flap. The aim of our study was to experimentally determine whether increasing blood flow in the perforator pedicle itself could benefit flap survival. Methods In 30 male Lewis rats, an extended posterior thigh perforator flap was elevated and the pedicle was dissected to its origin from the femoral vessels. The rats were assigned to three groups: control (group I), acute inflow (group II) and arterial preconditioning (group III) depending on the timing of ligation of the femoral artery distal to the site of pedicle emergence. Digital planimetry was performed on postoperative day (POD) 7 and all flaps were monitored using laser Doppler flowmetry perioperatively and postoperatively in three regions (P1-proximal flap, P2-middle of the flap, P3-distal flap). Results Digital planimetry showed the highest area of survival in group II (78.12%±8.38%), followed by groups III and I. The laser Doppler results showed statistically significant higher values in group II on POD 7 for P2 and P3. At P3, only group II recorded an increase in the flow on POD 7 in comparison to POD 1. Conclusions Optimization of arterial inflow, regardless if performed acutely or as preconditioning, led to increased flap survival in a rat perforator flap model.

흰쥐 모델에서 공여항원에 감작된 수지상세포가 피부동종이식의 생착에 미치는 영향 (The Effect of Donor Antigen-pulsed Dendritic Cells on Survival of Skin Allograft in a Rat Model)

  • 은석찬;김병준;김진희;허찬영;백롱민;장학;민경원
    • Archives of Plastic Surgery
    • /
    • 제35권4호
    • /
    • pp.367-372
    • /
    • 2008
  • Purpose: Prevention of acute rejection in skin allografts without continuous immunosuppression lacks reports in worldwide literature. Needs for chronic immunosuppression preclude the use of tissue allograft as a routine surgical reconstructive option. Recently dendritic cells(DC) gained considerable attention as antigen presenting cells that are also capable of immunologic tolerance induction. This study assesses the effects of alloantigen-pulsed dendritic cells in induction of survival increase in a rat skin allograft model. Methods: Recipient-derived dendritic cells were harvested from rat whole blood and cultured with GM-CSF(200 ng/mL) and IL-4(8 ng/mL) for 2 weeks. Then donor-specific alloantigen pulsed dendritic cells were reinjected into tail vein before skin graft. The rat dorsal skin allografts were transplanted in 5 subgroups. Groups: I) untreated, II) anti-lymphocyte serum(ALS, 0.5 mL), III) FK-506(2 mg/kg), IV) DCp, VI) DCp and FK-506. Graft appearance challenges were assessed postoperatively. Results: The group V(DC and FK-506 treated) showed longest graft survival rate(23.5 days) than other groups; untreated(5.8 days), ALS(7.2 days), FK-506 (17.5 days), DCp(12.2 days). Conclusion: Donor antigen pulsed host dendritic cell combined with short-term immunosuppression prolong skin allograft survival and has potential therapeutic application for induction of donor antigen specific tolerance.

금속합금선의 소성 압전 특성 (Plastic Piezoresistivity of a Steel-Alloy Wire)

  • 지광습;전기우;강진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2007
  • We studied the piezoresistivity of a steel-alloy 'wire when the deformation exceeds the elastic limit. It is that the piezoresistivity of the steel-alloy wire could be modeled by a bilinear function. To predict the plastic piezoresistivity relation, we developed a simple plastic piezoresistivity model based on the classical hardening plasticity. If structural members such as prestressing tendons in concrete structures are concerned, it is a very efficient and simple tool for monitoring.

  • PDF

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

동하중을 받는 구조물의 손상해석을 위한 대형균열모형과 수치 알고리즘 (Large Crack Model and Its Numerical Algorithm for Damage Analysis of Dynamically Loaded Structures)

  • 이지호
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.59-65
    • /
    • 2005
  • 본 논문에서는 기존 연속균열모형들이 대형균열 표현에서 소성변형을 과도하게 계산하는 문제점을 극복한 대형균열모형을 제안하였다. 또한 소성손상모형을 수정한 형태로 제안된 균열모형을 수치해석에 사용할 수 있도록 3단계 회귀매핑 알고리즘으로 구성된 알고리즘을 제시하였다. 전산해석 예제들을 통하여 제안된 균열손상 모형과 알고리즘이 동적 하중을 받는 구조물의 균열해석문제에서 과도한 소성변형을 억제하는 합리적인 결과를 도출함을 알 수 있었다.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory

  • Jin, Peijian;Wang, Enyuan;Song, Dazhao
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.627-637
    • /
    • 2017
  • The high positive correlation between plastic strain of loaded coal-rock and AE (acoustic emission) characteristic parameter was studied and proved through AE experiment during coal-rock uniaxial compression process. The results show that plastic strain in the whole process of uniaxial compression can be gained through the experiment. Moreover, coal-rock loaded process can be divided into four phases through analyzing the change of the plastic strain curve : pressure consolidation phase, apparent linear elastic phase, accelerated deformation phase, rupture and development phase, which corresponds to conventional elastic-plastic change law of loaded coal-rock. The theoretical curve of damage constitutive model is in high agreement with the experimental curve. So the damage evolution law of coal rock damage can be indicated by both acoustic emission and plastic strain. The results have great academic and realistic significance for further study of both AE signal characteristics during loaded coal-rock damaged process and the forecasting of coal-rock dynamic disasters.

FIND THE ROOT CAUSE OF WELDING-INDUCED DISTORTION BY NUMERICAL MODELING METHOD

  • Tsai, Chon L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.681-687
    • /
    • 2002
  • The cumulative, shrinkage plastic strains and their distributions in the weld joint after completion of the welding process determine welding-induced distortion. Although the weldment undergoes many complex physical and metallurgical changes during welding, only the material plastic temperature range and its cooling history below this temperature range influence the [mal state of the cumulative shrinkage plastic strains. In addition, for structural welds, these plastic strains are uniform, except in the arc start and stop regions, along the weld. Therefore, the plastic strain-based "inherent shrinkage model" is effective and accurate to describe welding-induced distortion. This paper presents the theoretical background and numerical verification of this root cause.

  • PDF