• Title/Summary/Keyword: Plastic internal variable

Search Result 10, Processing Time 0.024 seconds

A Study of Plastic Deformation Mechanisms in $Fe_3$Al Intermetallics Alloys by Inelastic Deformation Theory (비탄성 변형이론을 이용한 $Fe_3$Al 금속간화합물의 소성변형 기구 고찰)

  • 정호철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.180-183
    • /
    • 1999
  • It is well known that Fe3Al intermetallic compound shows an anomalous peak of the yield strength at about 50$0^{\circ}C$ and then decrease at higher temperatures The dislocation structure was examined by transmission electron microscopy and high temperatures. The dislocation structure was examined by transmission electron microscopy and high temperature mechanical properties were examined by tensile and load relaxation tests. The flow stress curves obtained from load relaxation tests were then analyzed in terms of internal variable deformation theory. it was found that the flow curves consisted of three micro-deformation mechanisms -i. e inelastic deformation mode plastic deformation mode and dislocation creep deformation mode depending on both dislocation structure and deformation temperature. The flow curves could be well described by the constitutive equations of these three micro-deformation mechanisms based on the internal variable deformation theory.

  • PDF

Structural dynamics: Convergence properties in the presence of damage and applications to masonry structures

  • Nappi, Alfonso;Facchin, Giovanni;Marcuzzi, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.587-598
    • /
    • 1997
  • A numerical model for masonry is proposed by following an internal variable approach originally developed in the field of elastic-plastic analysis. The general features of the theoretical framework are discussed by focussing on finite element models applicable to incremental elastic-plastic problems. An extremum property is derived and its implications in terms of convergence for convenient algorithms are briefly discussed, by including the case of softening materials and damage effects. Next, a numerical model is presented, which is suitable for masonry, can be developed according to the same internal variable formulation and enjoys similar properties. Some numerical results are presented and compared with the response of a masonry shear wall subjected to pseudodynamic tests.

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

APPLICATION OF FIBRIN ADHESIVE IN DISK REPLACEMENT AFTER MENISCECTOMY (관절원판 절제술후 중간삽입물 고정에 피브린 접착제의 응용)

  • Chung, Hoon;Kim, Hyeong-Keun;Kim, Young-Soo;Yu, Ki-Jun;Ahn, Byoung-Guen
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 1992
  • Meniscectomy is indicated for the internal derangement of disk with perforation and gross morphological changes, nonreactive to conservative treatment procedures. After the meniscectomy, permanent disk replacement can be followed. Variable materials have been introduced for disk replacement. Of them, relatively harder replacing materials should have been fixed with surgical wire only. This poor fixation method provide inadequate retentive force and conclusively can be attributed to postoperative noise, poor prognosis. We tried to use biocompatible fibrin adhesive in order to obtain additional fixation force in the method above mentioned and treated two patients with the late stage of internal derangement of disk In both cases, satisfactory results were obtained.

  • PDF

Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis (Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay (등방압밀점토에서 항복경계면 소성모델의 매개변수)

  • 이영생;김원영
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 1996
  • To predict the stress-strain behavior of the soil more approximately, the concept of the critical state soil mechanics was added to the plasticity increment theory in the bounding surface Plasticity model. This model was constituted with two ellipse and one hyperbola in older to describe the behaviour of the isotropically consolidated soil. Thus, this model is very complicate due to the various parameters used. Therefore, the accurate understanding and skill of the theory is required in order to apply this model to the practical geotechnical problems. In the present paper, the bounding surface shape paraiheter R and A, the mapping center parameter C among various parameters used were varied and the results were numerically analized. Finally, each sensitivity with respect to monotonic and cyclic loading was analized and the range of the value of the each parameter was proposed.

  • PDF

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Simultaneous Maxillo-Mandibular Distraction Osteogenesis in Hemifacial Microsomia: a Case Report (상하악에 동시 다발성 골신장술을 이용한 반안면왜소증의 치험례)

  • Kim, Il-Kyu;Park, Jong-Won;Lee, Eon-Hwa;Yang, Jung-Eun;Chang, Jae-Won;Pyun, Yeong-Hun;Ju, Sang-Hyun;Wang, Boon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.5
    • /
    • pp.447-453
    • /
    • 2010
  • The hemifacial microsomia is characterized by variable underdevelopment of the craniofacial skeleton, external ear, and facial soft tissues. So, patients with hemifacial microsomia have an occlusal plane canting and malocclusion with facial asymmetry. Distraction osteogenesis (DO) with an intraoral or extraoral device is a technique using tension to generate new bone with gradual bone movement and remodeling. DO has especially been used to correct craniofacial deformities such as a hemifacial microsomia, facial asymmetry, and mandible defect that could not adequately be treated by conventional reconstruction with osteotomies. It has a significant advantage to lengthen soft and hard tissue of underdeveloped site without bone graft and a few complication such as nerve injury or muscle contracture. A 13-years old girl visited our clinic for the chief complaint of facial asymmetry. She had a left hypoplastic maxilla and mandible, occlusal plane canting and malocclusion. We diagnosed hemifacial microsomia and lanned DO to lengthen the affected side. Le Fort I osteotomy, left mandibular ramus and symphysis osteotomy were performed. The internal distraction devices fixed with screw on maxillary and mandibular ramus osteotomy sites. External devices were adapted to lower jaw for DO on symphysis osteotomy site and to upper jaw for rapid maxillary expansion (RME). At 7days after surgery, distraction was started at the rate of 1mm per day for 13days, and after 4months consolidation periods, distraction devices were removed. Simultaneous multiple maxillo-mandibular distraction osteogenesis with RME resulted in a satisfactory success in correcting facial asymmetry as well as occlusal plane canting for our hemifacial microsomia.

Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images (두개골의 3차원 영상 분석을 위한 전산화단층촬영 방법의 비교-상층 두께가 3차원 영상의 계측에 미치는 영향)

  • Jeong Ho-Gul;Kim Kee-Deog;Park Hyok;Kim Dong-Ook;Jeong Haijo;Kim Hee-Joung;Yoo Sun Koo;Kim Yong Oock;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.151-157
    • /
    • 2004
  • Purpose : To evaluate the quantitative accuracy of three-dimensional (3D) images by means of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. Materials and Mathods : An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. Results: 11 line items in Conventional 3 mm, 8 in Helical 3mm, 11 in Conventional 5mm, 10 in Helical 5mm, 5 in Conventional 7mm and 9 in Helical 7mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2mm in 19 line items of Conventional 3mm, 20 of Helical 3mm, 15 of Conventional 5mm, 18 of Helical 5mm, II of Conventional 7mm and 16 of Helical 7mm. Conclusion: Considering image quality and patient's exposure time, scanning protocol of Helical 5mm is recommended for 3D image analysis of the skull in CT.

  • PDF