• Title/Summary/Keyword: Plastic injection

Search Result 709, Processing Time 0.026 seconds

An Experimental Study on the Reduction of a Birefringence Distribution in LGP by Injection-Press Molding (형체압축성형을 이용한 도광판의 복굴절 저감효과에 관한 실험적 연구)

  • Min I. K.;Kim J. S.;Ko Y. B.;Park H. P.;Yoon K. H.;Hwang C. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.17-22
    • /
    • 2005
  • The residual birefringence in molded plastic parts can be divided into two kinds of residual birefringence, i.e., the flow induced residual birefringence produced in flowing stages and the thermally induced residual birefringence produced in cooling stage. In this paper, the effect of new injection-press molding process with normal injection mold, i.e. I) injection-compression mode, ii) injection-press mode, on the distribution of birefringence was studied. It was found that the values of the birefringence was reduced at i) low clamping force and ii) longer mold opening length by injection-press molding.

  • PDF

A Study on Decision of gate location for Injection molding of Automobile air cleaner Upper cover (자동차용 에어클리너 상부커버 사출성형에서 게이트의 위치 결정)

  • Jang, Sung-Min;Kim, In-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4411-4417
    • /
    • 2015
  • The proper design of the gate location for injection molding of plastic goods is obtained from three-dimensional injection molding analysis for various design alternatives. This paper is study on effect of gate location in injection molding. It have a decisive impact on productivity and quality of plastic goods. This objectives of this paper is to analysis effect of hot runner gate location for resin filling, weld line, injection pressure to manufacture of automobile air cleaner upper case with injection molding machine. Thus, to analysis these problems in this paper, location of gate are gave variety in 4 CASEs. In this paper, the CAE simulation considering each variations in location of gate is performed to predict the cause of faulty which appears in the injection molding process.

Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method (다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jeoung, Sun-Kyoung;Lee, Pyoung-Chan;Moon, Ju-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.264-269
    • /
    • 2012
  • Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the $L_{16}$ orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.

The effect of botulinum toxin-A injection into the masseter muscles on prevention of plate fracture and post-operative relapse in patients receiving orthognathic surgery

  • Shin, Sung-Ho;Kang, Yei-Jin;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.36.1-36.5
    • /
    • 2018
  • Background: Botulinum toxin-A (BTX-A) injection into muscle reduces muscular power and may prevent post-operative complication after orthognathic surgery. The purpose of this study was (1) to evaluate BTX-A injection into the masseter muscle on the prevention of plate fracture and (2) to compare post-operative relapse between the BTX-A injection group and the no injection group. Methods: Sixteen patients were included in this study. Eight patients received BTX-A injection bilaterally, and eight patients served as control. All patients received bilateral sagittal split ramus osteotomy for the mandibular setback and additional surgery, such as LeFort I osteotomy or genioplasty. Post-operative plate fracture was recorded. SNB angle, mandibular plane angle, and gonial angle were used for post-operative relapse. Results: Total number of fractured plates in patients was 2 out of 16 plates in the BTX-A injection group and that was 8 out of 16 plates in the no treatment group (P = 0.031). However, there were no significant differences in post-operative changes in SNB angle, mandibular plane angle, and gonial angle between groups (P > 0.05). Conclusions: BTX-A injection into the masseter muscle could reduce the incidence of plate fracture.

A Study on the Characteristics of Plastic Injection Molding Using Core in Core Cooling Technology (Core in Core 냉각기술을 적용한 플라스틱 사출성형 특성에 관한 연구)

  • Choi, Yun-Seo;Park, In-Seung;Yang, Dong-Ho;Ha, Byeong-Cheol;Heo, Man-Woo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.82-87
    • /
    • 2019
  • Recently, plastic materials have become more diversified, and the development of materials with excellent mechanical properties and plasticity has enabled wider application, miniaturization, and refinement of injection molded products. As a result, the utilization of these products in household goods, electronics, automotive parts, and aircraft parts is increasing in almost all industries. Injection molded parts are often used externally on finished commercial products. This means that the injection mold industry is very important to the value of these products. For this reason, the industry is performing research on the precision and efficiency of the injection molding process. In this study, we investigated the applicability of the core in core cooling method to the problem of product deformation due to temperature variation in existing injection mold designs. We also characterized the cooling performance of an injection mold when using this cooling method.

Research for Magnesium Injection Molding Process (마그네슘 사출성형 공정에 관한 연구)

  • 강태호;김인관;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.882-885
    • /
    • 2002
  • Magnesium alloys are very attractive materials for appling to the development of autemobile parts or electric goods where light weight and higher stiffness. Due to higher ratio of strength vs. weight and stillness vs. weight, various magnesium alloys are well applied in much weight saving design applications though extrusion or die-casting process. However for the requisites of higher strength and weight savings, some new fabrication processes has been and it can be realized though the aid of injection modeling technology. To obtain the parametric data base for the injection molding process, various experiments were executed for AZ91D magnesium alloy. This paper propose the optimum condition of injection temperature, first and second pressure. the process was lined-up successfully often changing the injection unit. fluid pressure system from the conventional plastic injection molding process.

  • PDF

Development of an Expert System for Multi-component Injection Molding (다재 사출성형 전문가 시스템 개발)

  • 강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.213-217
    • /
    • 1999
  • An expert system is developed for rational and efficient design of multi-component injection molding which is a fairly new manufacturing technique to produce plastic parts by injecting two or more materials sequentially using multiple injection units in a single machine into a single rotary mold. The knowledge base used in the present design system is primarily composed of two parts ; knowledge from domain expert and knowledge from CAE analysis. The present expert system has hour main modules ; general design guidelines for injection molding specific guidelines for multi-component injection molding redesign guidelines from the result of the CAE analysis and finally troubleshooting for multi-component injection molding. To show the validity of the present design methodology two shop floor design problems were tested ; design and fabrication of timing belt cover and power window's assist knob by using multi-component injection molding.

  • PDF