• Title/Summary/Keyword: Plastic hinge analysis

Search Result 252, Processing Time 0.021 seconds

Design of Steel Frames using Plastic Hinge Analysis (소성힌지해석을 이용한 강골조 시스템의 설계)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The main objective of the research is to develop an algorithm for the optimum design of two dimensional steel frames using refined plastic hinge analysis which considers material and geometrical nonlinearities. Using developed algorithm, an optimum design was perform without calculating an effective length factor of the column (K-factor). A multi-level discrete optimization technique with two parameters has been developed and employed in the optimum design algorithm. The optimization algorithm is applied to structural design with the objective of minimizing the weight of a structure and with constraints on load limit, frame drift, ductility. Various application example is provided to demonstrate the feasibility, validity and efficiency of the developed program.

A study on pushover analyses of reinforced concrete columns

  • Sung, Yu-Chi;Liu, Kuang-Yen;Su, Chin-Kuo;Tsai, I-Chau;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.35-52
    • /
    • 2005
  • This paper proposes a realistic approach to pushover analyses of reinforced concrete (RC) structures with single column type and frame type. The characteristic of plastic hinge of a single RC column subjected to fixed axial load was determined first according to column's three distinct failure modes which were often observed in the experiments or earthquakes. By using the determined characteristic of plastic hinge, the pushover analyses of single RC columns were performed and the analytical results were investigated to be significantly consistent with those of cyclic loading tests. Furthermore, a simplified methodology considering the effect of the variation of axial force for each RC column of the frame structure during pushover process is proposed for the first time. It would be helpful in performing pushover analysis for the structures examined in this study with efficiency as well as accuracy.

Softening Analysis of Reinforced Concrete Frames (철근콘크리트 골조의 연성화 해석)

  • 나유성;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.438-443
    • /
    • 1998
  • Softening os the name used for decreasing bending moment at advanced flexural deformation. To accommodate softening deformation in analysis, it is assumed that a hinge has finite length. The softening analysis of R/C frames relies on the primary assumption that softening occurs over a finite hinge length and that the moment-curvature relationship for any section may be closely described by a trilinear approximation. A stiffness matrix for elastic element with softening regions are derived and the stiffness matrix allows extension of the capability of an existing computer program for elastic-plastic analysis to the softening situation. The effect of softening on the collapse load of R/C frame is evaluated.

  • PDF

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF

Refined-plastic hinge analysis of 3D steel structures using fiber elements (화이버 요소를 이용한 3차원 강구조물의 개선소성힌지해석)

  • 김승억;오정렬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.281-287
    • /
    • 2004
  • In this paper, the refined plastic-hinge analysis accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(P-δ) and frame(P-Δ) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

  • PDF

3D Nonlinear Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 3차원 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.141-146
    • /
    • 2002
  • In the present design concept, the nonlinear behavior of bridges is allowed under large earthquake. Therefore, demands for nonlinear analyses of bridges are increased more and more especially in the area of seismic assessment. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element Is adopted for model ins pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continuos bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is investigated. Second, the nonlinear dynamic analyses of the full bridge model is performed, considering 3 directional earthquake excitations.

  • PDF

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

Plastic Hinge Modeling Based on Lumped Plasticity using a Generalized Finite Element Method (일반유한요소법을 이용한 집중소성힌지 모델링)

  • Son, Hong-Jun;Rhee, Seung-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.381-388
    • /
    • 2018
  • This paper presents a generalized finite element formulation for plastic hinge modeling based on lumped plasticity in the classical Euler-Bernoulli beam elements. In this approach, the plastic hinges are effectively modeled using proper enrichment functions describing weak discontinuities of the solution. The proposed methodology enables the insertion of plastic hinges at an arbitrary location without modifying the connectivity of elements. The formations of plastic hinges are instead achieved by hierarchically adding degrees of freedom to existing elements. Convergence analyses such as h- and p-extensions are performed to investigate the effectiveness of the proposed method. The analysis results indicate that the proposed generalized finite element method can achieve theoretical convergence rates for both cases where plastic hinges are located at nodes and within an element, thus demonstrating its accuracy.