• Title/Summary/Keyword: Plastic formability

Search Result 101, Processing Time 0.023 seconds

Mechanical properties and formability of asymmetrically rolled aluminum alloy sheet (무윤활 압연한 알루미늄 판재의 기계적 특성과 성형성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.429-431
    • /
    • 2009
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND // <111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study, The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND // <111> texture components through asymmetric rolling in Al sheet.

  • PDF

Formability of Sheet Metals (금속판재의 성형성)

  • 이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.11-23
    • /
    • 1994
  • Formability of sheet metals can be evaluated using tensile testing. Easily measured tensile properties such as yield strength, tensile strength, elongation, strain hardening exponent, strain rate sensitivity and plastic strain ratio are important parameters to evaluated the sheet formability. This paper briefly explains how these properties are related to deep drawability and stretchability. The plastic anisotropy of sheet metals is usually attributed to the crystallographic texture. However dislocation distribution may influence the anisotropy.

Texture of Asymmetric Rolled Aluminum sheets (알루미늄 비대칭압연 집합조직)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.477-479
    • /
    • 2008
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND//<111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study. The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through asymmetric rolling in Al sheet.

  • PDF

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Correlation Between Tensile-compressive Behavior and Formability of Al7050 Alloy (Al7050 합금의 인장-압축거동과 성형성 간 상관관계)

  • Bae, D.H.;Oh, J.H.;Jeong, C.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Since aluminum alloys experience both tensile and compression deformation modes during forming process, it is important to understand the role of deformation mode on the hot formability of metallic alloys. In the present work, the hot formability of Al7050 alloy was investigated by conducting both tensile and Gleeble tests at various temperatures and strain rates. Processing maps representing low efficiency regions were observed at low temperature and high strain rate in both tensile and compressive deformation modes while the maximum efficiency regions depended on different deformation modes. Moreover, samples tested at stable processing conditions presented a smaller pore fraction than those at instable conditions that resulted in crack initiation during plastic deformation. This result shows that different deformation modes during plastic forming can affect formability changes of metallic alloys. Understanding of tension-compression behaviors will help us solve this problem.

Plastic Strain Ratio and Texture of the ECAPed and Heat-treated Aluminum AA 1050 Sheet (ECAP 한 후 열처리한 알루미늄 AA 1050 합금 판재의 집합조직과 소성변형비 변화)

  • Akramov Saidmurod;Lee M. K.;Park B. H.;Kim I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.369-372
    • /
    • 2005
  • A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND. The <110>// ND textures appears in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic Strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

Texture and Plastic Strain Ratio of the Severe Shear Deformed with ECAP and Heat-treated AA 1050 Aluminum Alloy Sheet (ECAP로 심한 전단 소성변형한 후 열처리한 AA 1050 알루미늄 합금 판재의 집합조직과 소성변형비)

  • Akramov S.;Lee M. K.;Park B. H.;Kim I.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.553-558
    • /
    • 2005
  • A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence (경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술)

  • Bae, M.K.;Hong, S.H.;Choi, K.Y.;Yoon, J.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet (비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Nam, Su-Kwon;Jeong, Hae-Bong;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

Texture and Plastic deformation of the Severe Ecaped and Heatreated AA 1050 Aluminum Alloy Sheet (심한 전단변형(ECAP)과 열처리한 알루미늄 AA 1050 합금 판재의 소성변형비와 집합조직)

  • Akramov Saidmurod;Lee M. K.;Kim I.;Park B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • A study on the microstructure and the texture of the samples after ECAP and subsequent heat treatment has been carried out. The specimens after ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has been used as a parameter that expresses the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions has been investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment.

  • PDF