• Title/Summary/Keyword: Plastic flow-Rule

Search Result 69, Processing Time 0.023 seconds

A Wave Propagation Analysis in the Layered Systems (적층계(積層係)를 통과하는 소성응력파(塑性應力波)의 전파(傳波))

  • Lee, Sang Ho;Ahn, Byoung Ki;Kang, Young Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 1993
  • The stress waves generated by the mechanical energies by impact or the chemical energies by the explosions are transmitted through medium. The wave propagation process through medium is a very complicated procedure due to the reflections and refractions of the waves at the free surfaces and interfaces. In this study the pressure independent Von-Mises model is employed for the wave propagation analysis in the layered systems. Governing equations of this study are conservation equations of momentum and mass in Lagrangian coordinate system which is fixed to the material. Due to the shock-front which violates the continuity assumptions inherent in the differential equations numerical artificial viscosity is used to spread the shock front over several computational zones. These equations are solved by Finite Difference Method with discretized time and space coordinates. The associate normality flow rule as a plastic theory is implemented to find the plastic strains.

  • PDF

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

Accuracy of EPFM Approach Based on the p-Version of F.E.M. (p-Version 유한요소법에 기초한 EPFM 해석법의 정확성)

  • 홍종현;우광성;박진환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.429-436
    • /
    • 1999
  • The best available solution to predict the fatigue life of structural steels is the implementation of EPFM approach based on the principles and techniques of elasto plastic fracture mechanics. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ΔJ for ΔK that is calculated by the proposed p-version model. The proposed P-version finite element model is formulated by the incremental theory of Plasticity that consists of the constitutive equation fur elastic-perfectly plastic materials, Tresca/von-Mises yield criteria, and associated flow rule. The experimental fatigue test is conducted with five UP(Center Clucked Panels) specimens to validate the accuracy of the p-version finite element model. Also, the results obtained by LTM approach have been compared with those by EPFM approach.

  • PDF

Analysis of Stretching of Perforated Sheets for Shadow masks (섀도마스크용 천공판의 신장성형 해석)

  • 백승철;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.25-32
    • /
    • 1994
  • In order to analyse stretching of perforated sheets for shadow masks by the finite element method for use with the associated flow rule, yield functions which can explain the yield stresses and the apparent plastic contraction ratios of the sheets have been obtained. Coefficients in the yield functions could be determined from the measured apparent plastic contraction ratios under uniaxial tension. Using this yield function and estimated coefficients, the stretching of hole-type and slot-type sheets has been analysed and compared with the experimental results. The calculated results were in good agreement with the experimental results.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

The sectional analysis of auto-body panel stamping process and three-dimensional shape composition (차체판넬 스템핑공정의 단면해석과 3차원 형상합성)

  • Jung, Dong-Won;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.101-107
    • /
    • 1997
  • A sectional analysis of auto-body panel stamping is carried out by using the rigid-plastic FEM based on the membrane theory. The auto-body panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A method of contact treatment is proposed in which the skew boundary condition for arbitarily shaped tools is successively used during iteration. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the composition of the two-dimensional section analysis gives almost the same results as the full three-dimensional analysis.

  • PDF

Multiaxial ratcheting assessment of Z2CND18.12N steel using modified A-V hardening rule

  • Xiaohui Chen;Yang Zhou;Wenwu Liu;Xu Zhao
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • Based on Ahmadzadeh-Varvani hardening rule (A-V model), multiaxial ratcheting effect of Z2CND18.12N austenitic stainless steel is simulated by ABAQUS with user subroutine UMAT. The results show that the predicted results of the origin multiaxial A-V model are lower than the experimental data, and it is difficult to control ratcheting strain rate. In order to improve the predicted capability of A-V model, the A-V model is modified. In this study. Moreover, under the assumption of the von Mises yield criterion and normal plasticity flow rule, we develop a numerical algorithm of plastic strain with the improved model to implement the finite element calculation of the model. Internal iteration in the numerical algorithm was implemented with the Euler backward method, which calculated the trial strain for each equilibrium iteration using the consistent tangent matrix. With a user subroutine, the proposed model is programmed into ABAQUS for a user - executable version. By simulating the uniaxial ratcheting of a round bar made of Z2CND18.12N austenitic stainless steel, we observe that the predicted results simulated by ABAQUS with UMAT are compared with the experimental data. The predicted results of the improved multiaxial A-V model are consistent well with the experimental data.

An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA (역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가)

  • Baek, Seung-Se;Kwon, Il-Hyun;Kim, Hoi-Hyun;Lee, Dong-Hwan;Yang, Sung-Mo;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.