• Title/Summary/Keyword: Plastic behavior

Search Result 2,098, Processing Time 0.033 seconds

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

Cyclic behavior of steel I-beams modified by a welded haunch and reinforced with GFRP

  • Egilmez, O. Ozgur;Alkan, Deniz;Ozdemir, Timur
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.419-444
    • /
    • 2009
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. Reducing the flange-web slenderness ratios (FSR/WSR) of beams is the most effective way in mitigating local member buckling as stipulated in the latest seismic design specifications. However, existing steel moment frame buildings with beams that lack the adequate slenderness ratios set forth for new buildings are vulnerable to local member buckling and thereby system-wise instability prior to reaching the required plastic rotation capacities specified for new buildings. This paper presents results from a research study investigating the cyclic behavior of steel I-beams modified by a welded haunch at the bottom flange and reinforced with glass fiber reinforced polymers at the plastic hinge region. Cantilever I-sections with a triangular haunch at the bottom flange and flange slenderness ratios higher then those stipulated in current design specifications were analyzed under reversed cyclic loading. Beam sections with different depth/width and flange/web slenderness ratios (FSR/WSR) were considered. The effect of GFRP thickness, width, and length on stabilizing plastic local buckling was investigated. The FEA results revealed that the contribution of GFRP strips to mitigation of local buckling increases with increasing depth/width ratio and decreasing FSR and WSR. Provided that the interfacial shear strength of the steel/GFRP bond surface is at least 15 MPa, GFRP reinforcement can enable deep beams with FSR of 8-9 and WSR below 55 to maintain plastic rotations in the order of 0.02 radians without experiencing any local buckling.

Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.495-505
    • /
    • 2006
  • Calculating the distribution of stresses and displacements around a circular tunnel excavated in infinite isotropic rock mass subjected to hydrostatic stress condition is one of the basic problems in rock engineering. While closed-form solutions for the distribution are known if rock masses are considered as elastic, perfectly plastic, or brittle-plastic media, a few numerically approximated solutions based on various simplifying assumptions have been reported for strain-softening rock mass. In this study, a simple numerical method is introduced for the analysis of strain-softening behavior of the circular tunnel in Mohr-Coulomb rock mass. The method can also applied to the analysis of the tunnel in brittle-plastic or perfectly plastic media. For the brittle-plastic case where closed-formsolution exists, the performance of the present method is verified by showing an excellent agreement between two solutions. In order to demonstrate the strain-softening behaviors predicted by the proposed method. a parameter study for a softening index is given and the construction of ground reaction curves is carried out. The importance of defining the characteristics of dilation in plastic analysis is discussed through analyzing the displacements near the surface of tunnel.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Improved Injection Behavior with the Addition of Granulated β-Tricalcium Phosphate in Brushite Bone Cement

  • Jo, Hyun-Ho;Oh, Kyung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.590-596
    • /
    • 2018
  • To improve the injection behavior of brushite cement, dense ${\beta}-Ca_3(PO_4)_2$ (${\beta}-TCP$) granules were added to the starting material. The spherical ${\beta}-TCP$ granules prepared by spray-drying and subsequent sintering at $1000{\sim}1200^{\circ}C$ accounted for fractions of from 0.5 to 0.7 of the total ${\beta}-TCP$. The injection behavior was evaluated by measuring the injected mass divided by the loaded mass of paste in the syringe pump. The injected amount was increased with the increase in the fraction and sintering temperature of ${\beta}-TCP$ granules, except at $1200^{\circ}C$. The increase in the fraction of ${\beta}-TCP$ and its sintering temperature resulted in a decrease in the plastic limit, which is the volume of water required to liquefy the compact. The rest water could be utilized in the cement with the reduced plastic limit for improved injectability. The amounts of rest water assigned for powdery phase were estimated, and correlated with the injectability of paste.

Elasto-Plastic Analysis for Flexural Behavior of Externally Prestressed Composite Bridges (외부 프리스트레스트 강합성 교량의 탄소성 휨 거동해석)

  • Chung, Seung In;Ryu, Hyung Keun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Recent application researches on external pre-stressing method of composite structures have been conducted to explore its advantages. An external pre-stress could improve mechanical behavior and maintenance, and is economically efficient. In this paper, the Incremental Deformation Method (IDM) was proposed to analyze the elasto-plastic flexural behavior of externally pre-stressed composite bridge with consideration for the material's nonlinearity. This method was verified with experimental results.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.