• Title/Summary/Keyword: Plastic Work

Search Result 730, Processing Time 0.03 seconds

A Case Study on the Architectural Planning of Floating Hotel (플로팅 호텔의 건축계획에 대한 사례연구)

  • Moon, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.515-522
    • /
    • 2011
  • This research is intended to suggest some reference materials for the future planning of floating hotel, by reviewing the concept of floating hotel and analyzing the realized and planned ones through the search of related documents and homepages. Floating hotel can be defined as a building for living/recreation/work/entertainment with floating system on water, but without navigation tool. In terms of sequence, the River Kawi Jungle Rafts Resort was built in 1976, Four Seasons Hotel in 1988, and Salt & Sill in 2008. Floating hotels are various in scale(height) and size(room numbers), and have basic, cultural, health & marina facilities. Architectural characteristics of sample facilities can be summarized as self-supporting of the facilities, environmentally friendly architectural planning, utilization of renewable energy, introduction of new plastic composite material, and provision of same view from all bedrooms by rotating the building.

Automatic Control System for Cultivation Environment of Crops (농작물 육성에 필요한 환경 자동제어 시스템)

  • Ahn, Woo-young;Lee, Hyun-chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2167-2171
    • /
    • 2016
  • The purpose of the cultivated crops have been changes in the aim of improving quality production. In recent years, as people's attention on health, the demand for healthy crops such as mushrooms gradually increased. In the process of mushroom factory production, regulation of environmental factors directly affects the yield and quality of mushroom. In related to the methods of mushroom cultivation, the recent technologies apply the new technology such as sensors and IT convergence services. And then cultivating mushroom is managed effectively. Farmers use plastic greenhouse cultivation mode more and more in order to reduce the impact of outdoor environment on crop cultivation, which requires farmers to adjust the greenhouse temperature at any time. But the majority of farmers still use a thermometer to measure temperature. This paper constructs an environment that can automatically adjust the temperature, so as to measuring temperature in real time, improving the efficiency of the farm work, and reducing unnecessary labor.

Identification of Diachea leucopodia on Strawberry from Greenhouse in Korea

  • Lee, Jung-Han;Han, Ki-Soo;Bae, Dong-Won;Kim, Dong-Kil;Kim, Hee-Kyu
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.143-147
    • /
    • 2008
  • We have detected the slime mold, Diachea leucopodia (GNU06-10) in a strawberry greenhouse located in Sancheong-gun, Gyeongnam. Typical fruiting bodies had developed gregariously on the strawberry leaves, petioles, and plant debris on ground soil habitat, and also surprisingly on plastic pipes and a vinyl covering. Field samples were examined via stereomicroscopy, light microscopy, and SEM for the determination of morphological characteristics. Dark-brown to black spores formed gregariously within the stipitate cylindrical sporangium, and were covered by an iridescent peridium, which may be intact at maturity, or may have disintegrated. The upper portion of the peridium generally breaks up to expose the spores, whereas the lower portion was usually persistent. The results of energy dispersive X-ray spectrometer (EDS) analysis showed that lime was present in the stalk and columella but absent from the spores, capillitium, and peridium. The above characteristics confirm its taxonomic position in the genus Diachea. However, this genus is intermediate in character between the Physarales and Stemonitales of the Myxogastromycetidae. Hence, this genus had been classified as a member of the Stemonitales until the mid-1970's, on the basis of its iridescent peridium and noncalcareous capillitial system, similar to Comatricha of the Stemonitaceae. By way of contrast, emphasis on morphological characteristics, most notably the calcareous stalk and typical columella, places Diachea within the order Physarales. The presence of a phaneroplasmodium during the trophic stage and lime deposition in its sporophores, as was confirmed in this work, supported the inclusion of Diachea in the Physarales, and the noncalcareous capillitial system verified its identification as a member of the Didymiaceae. Further characteristics of the species D. leucopodia include the following: phaneroplasmodium, spore globose 7.5 ${\mu}m$ in diameter, very minutely roughened; sporangia $500{\mu}m\times1mm$, more or less cylindrical, gregarious, stalked 1.2mm; stalk and columella white.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete

  • Lai, Binglin;Liew, J.Y. Richard;Xiong, Mingxiang
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.67-79
    • /
    • 2019
  • Composite columns made of high strength materials have been used in high-rise construction owing to its excellent structural performance resulting in smaller cross-sectional sizes. However, due to the limited understanding of its structural response, current design codes do not allow the use of high strength materials beyond a certain strength limit. This paper reports additional test data, analytical and numerical studies leading to a new design method to predict the ultimate resistance of composite columns made of high strength steel and high strength concrete. Based on previous study on high strength concrete filled steel tubular members and ongoing work on high strength concrete encased steel columns, this paper provides new findings and presents the feasibility of using high strength steel and high strength concrete for general double symmetric composite columns. A nonlinear finite element model has been developed to capture the composite beam-column behavior. The Eurocode 4 approach of designing composite columns is examined by comparing the test data with results obtained from code's predictions and finite element analysis, from which the validities of the concrete confinement effect and plastic design method are discussed. Eurocode 4 method is found to overestimate the resistance of concrete encased composite columns when ultra-high strength steel is used. Finally, a strain compatibility method is proposed as a modification of existing Eurocode 4 method to give reasonable prediction of the ultimate strength of concrete encased beam-columns with steel strength up to 900 MPa and concrete strength up to 100 MPa.

Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process (냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가)

  • Ryu, S.H.;Jung, S.H.;Jeong, H.Y.;Kim, K.I.;Cho, G.S.;Noh, W.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

Microstructure and Mechanical Properties of 600 MPa-Grade Seismic Resistant Reinforced Steel Bars Fabricated by a Pilot Plant (Pilot Plant를 이용한 600 MPa급 내진용 철근들의 제조, 미세조직과 기계적 특성 비교)

  • Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.349-355
    • /
    • 2019
  • This study deals with the microstructure and tensile properties of 600 MPa-grade seismic reinforced steel bars fabricated by a pilot plant. The steel bar specimens are composed of a fully ferrite-pearlite structure because they were air-cooled after hot-rolling. The volume fraction and interlamellar spacing of the pearlite and the ferrite grain size decrease from the center region to the surface region because the surface region is more rapidly cooled than the center region. The A steel bar specimenwith a relatively high carbon content generally has a higher pearlite volume fraction and interlamellar spacing of pearlite and a finer ferrite grain size because increasing the carbon content promotes the formation of pearlite. As a result, the A steel bar specimen has a higher hardness than the B steel bar in all the regions. The hardness shows a tendency to decrease from the center region to the surface region due to the decreased pearlite volume fraction. On the other hand, the tensile-to-yield strength ratio and the tensile strength of the A steel bar specimen are higher than those of the B steel bar with a relatively low carbon content because a higher pearlite volume fraction enhances work hardening. In addition, the B steel bar specimen has higher uniform and total elongations because a lower pearlite volume fraction facilitates plastic deformation caused by dislocation slip.

A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding (SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구)

  • Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.88-93
    • /
    • 2021
  • SAW (Submerged Arc Welding) is often used for ship construction or welding pressure vessels and involves spraying a flux in a powder form to a welding site to a certain thickness and continuously supplying electrode wires therein. This welding method enables high current welding up to 1,500 to 3,000 A. Arc efficiency is higher than 95% and the technique allows clean work as it creates less welding fume, which is composed of fine metal oxide particles, and the arc beam is not exposed. In this study, SM490C-TMC thick plates were heterogeneously welded by SAW. Mechanical properties of welds were measured, and welds were assessed macroscopically and for adhering magnetic particles. The following conclusions were drawn. Bending tests showed no spots exploded on sample surfaces or any other defect, and plastic deformation testing confirmed sufficient weld toughness. These results showed the 1F welding method has no shortcomings in terms of bending performance.

Comparative optimization of Be/Zr(BH4)4 and Be/Be(BH4)2 as 252Cf source shielding assemblies: Effect on landmine detection by neutron backscattering technique

  • Elsheikh, Nassreldeen A.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2614-2624
    • /
    • 2022
  • Monte Carlo simulations were used to model a portable Neutron backscattering (NBT) sensor suitable for detecting plastic anti-personnel mines (APMs) buried in dry and moist soils. The model consists of a 100 MBq 252Cf source encapsulated in a neutron reflector/shield assembly and centered between two 3He detectors. Multi-parameter optimization was performed to investigate the efficiency of Be/Zr(BH4)4 and Be/Be(BH4)2 assemblies in terms of increasing the signal-to-background (S/B) ratio and reducing the total dose equivalent rate. The MCNP results showed that 2 cm Be/3 cm Zr(BH4)4 and 2 cm Be/3 cm Be(BH4)2 are the optimal configurations. However, due to portability requirements and abundance of Be, the 252Cf-2 cm Be/3 cm Be(BH4)2 NBT model was selected to scan the center of APM buried 3 cm deep in dry and moist soils. The selected NBT model has positively identified the APM with a S/B ratio of 886 for dry soils of 1 wt% hydrogen content and with S/B ratios of 615, 398, 86, and 12 for the moist soils containing 4, 6, 10, and 14 wt% hydrogen, respectively. The total dose equivalent rate reached 0.0031 mSv/h, suggesting a work load of 8 h/day for 806 days within the permissible annual dose limit of 20 mSv.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.