• Title/Summary/Keyword: Plastic Work

Search Result 725, Processing Time 0.033 seconds

Estimation of Plate Deformation in Thermal Processing using the Eigenstrain Concept (고유변형율의 개념을 이용한 열가공공정 시 판 변형 예측)

  • 손광재;양영수;장상균
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2003
  • In the present work, a formula for plate deformation produced by line heating, in terms of process parameters such as heat input and plate dimensions, is developed analytically using an eigenstrain concept. The residual deformation that was due to thermal process was depends on the magnitude and region of plastic strains at heating zone. The magnitude of plastic strains was determined by disk model and its region was calculated using the Rosenthal"s solution. The vertical displacement of the plate was analyzed by using an infinite laminated plate theory to consider a cuboidal inclusion with an eigenstrain. Comparison of the calculated results and experimental data shows the accuracy and validity of proposed method.thod.

Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep - (복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (II) - 탄-소성-크리프 -)

  • Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1065-1073
    • /
    • 2009
  • In this paper, the estimation method of C(t)-integral for combined mechanical and thermal loads is proposed for elastic-plastic-creep material via 3-dimensional FE analyses. Plasticity induced by initial loading makes relaxation rate different from those produced elastically. Moreover, the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. To quantify C(t)-integral for combined mechanical and thermal loads, the simplified formula are developed by modifying redistribution time in existing work done by Ainsworth et al..

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements (입체요소를 사용한 플라스틱 렌즈의 사출성형 및 후변형 해석)

  • Park, Geun;Han, Chul-Yup
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.784-787
    • /
    • 2003
  • The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes. residual stress is estimated and the final deformed patters are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

  • PDF

Three-Dimensional Net Shaping Combining $VLM-_{ST}$ and the Triple Reverse Rapid Tooling ($VLM-_{ST}$ 공정과 삼단역전 쾌속 툴링 공정을 이용한 3차원 제품 정형가공에 관한 연구)

  • 안동규;이상호;양동열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.428-432
    • /
    • 2003
  • The technical combination of RP and RT has a potential for rapid manufacturing of three-dimensional parts. In the present work a new RP system, $VLM-_{ST}$, is proposed to manufacture net shapes of 3D prototypes. ㅁ human head shape and a kob shape are manufactured by the $VLM-_{ST}$ apparatus. In addition, a new RT technology, which utilizes a RTV molding technique and a triple reverse process technique, is proposed to manufacture net shapes of 3D plastic parts using prototypes of $VLM-_{ST}$. A plastic part of the knob shape os produced by the proposed RT technology. The combination of the proposed RP and RT enables the manufacturing of a plastic knob within two days.

  • PDF

The Studying on Drum-type Hill-drop Unit

  • Zhang, Xuejun;Yang, Yin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.996-998
    • /
    • 1996
  • The drum-type hill-drop unit, an important working device of the plastic -film-covered hill planter, can finish filling and separating seed precisely, perforating film and holing , and its seeding depth and spacing are stability . The unit is applied to hole seed many crops, for example, cotton, corn , soybean, etc. The drum-type hill-drop unit(DHU) , the key work unit to the plastic film-covered planter, mainly consists of distributor box , seeding parts, hole forming unit and drum , It can be operated to accomplish seeds distributing, hole forming , plastic film perforating . Moreover , its inner cavity can be used as seed box.

  • PDF

A study on the cooling analysis of plastic products with high aspect ratio (고형상비를 갖는 플라스틱제품의 냉각해석에 관한 연구)

  • Hwang, Si-Hyun;Seo, Gi-Yeong;Kim, Chul-Kyu;Kim, Meong-Gi;Ji, Seong-Dae;Jung, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2008
  • Injection molding is representative process of plastic production. Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the various conditions. In this study, moldflow software was used to analyze the cooling analysis. The results of cooling analysis and testing catapult were compared for plastic products.

  • PDF

A Study on the Fault Process and Equipment Analysis of Plastic Ball Grid Array Manufacturing Using Data-Mining Techniques

  • Sim, Hyun Sik
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1271-1280
    • /
    • 2020
  • The yield and quality of a micromanufacturing process are important management factors. In real-world situations, it is difficult to achieve a high yield from a manufacturing process because the products are produced through multiple nanoscale manufacturing processes. Therefore, it is necessary to identify the processes and equipment that lead to low yields. This paper proposes an analytical method to identify the processes and equipment that cause a defect in the plastic ball grid array (PBGA) during the manufacturing process using logistic regression and stepwise variable selection. The proposed method was tested with the lot trace records of a real work site. The records included the sequence of equipment that the lot had passed through and the number of faults of each type in the lot. We demonstrated that the test results reflect the real situation in a PBGA manufacturing process, and the major equipment parameters were then controlled to confirm the improvement in yield; the yield improved by approximately 20%.