• Title/Summary/Keyword: Plastic Welding

Search Result 427, Processing Time 0.028 seconds

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Distribution of Welding Residual Stresses in T-joint Weld with Root Gap (루트부 갭이 있는 양면 필릿용접 이음부의 용접잔류응력 분포)

  • H.S. Bang;S.H. Kim;Y.P. Kim;C.W. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.81-88
    • /
    • 2002
  • The root joint in the welding structures are apt to failure by the stress concentration which is occurred by the external force. Therefore, in the safety and reliability of structure, the complete penetration joint welding which are obtained by the groove welding with edge preparation is generally required. Nevertheless, fillet T-joint welding without edge preparation is often carried out in the fields to reduce working time and consumption of welding electrode, however, this process is likely to produce inadequate joint penetration such as root gap. In this paper, the focus of research is to investigate distribution of welding residual stresses in the plate(or flange) and web of T-joint weld, and especially in the near of root gap notch that is due to incomplete joint penetration. For the analysis, we have chosen model of T-joint weld in the cases of single and multi-pass welding with submerged arc welding and analyzed model by using finite element programs considering the heat conduction and thermal elasto-plastic theory.

The Analysis of Elasto-Plastic Thermal Stresses for Welding Part in Double Capstan Drum (더블 캡스턴 드럼의 용접부에 대한 탄소성 열응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • Welding is a important technological method in mechanical engineering. $CO_2$MAG(metal active gas) welding means that metal part in double capstan drum for the inshore and costal vessels are joined by melting(with or without a filler material) or that new material is added to a metal part by melting. The thermal stresses appear due to a non-uniform temperature field, inhomogeneous material properties, external restraint and volume changes during phase transformations. In this study analysis the elasto-plastic thermal stresses distribution of welding part in double capstan drum for the inshore and costal vessels using finite element method (FBM). Therefore it calculates the numerical value that can be applied to the optimum design of welding parts and the shapes. The significant results obtained in this study are summarized as fellows. At early stage of the cooling after welding process, the abrupt thermal stresses gradient has been shown in the vicinity of welding part. In the thermal stresses analysis due to temperature gradient and heat shocking maximum stress was occurred of welding part and stresses were distributed from 54MPa~48MPa.

  • PDF

A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding (SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구)

  • Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.88-93
    • /
    • 2021
  • SAW (Submerged Arc Welding) is often used for ship construction or welding pressure vessels and involves spraying a flux in a powder form to a welding site to a certain thickness and continuously supplying electrode wires therein. This welding method enables high current welding up to 1,500 to 3,000 A. Arc efficiency is higher than 95% and the technique allows clean work as it creates less welding fume, which is composed of fine metal oxide particles, and the arc beam is not exposed. In this study, SM490C-TMC thick plates were heterogeneously welded by SAW. Mechanical properties of welds were measured, and welds were assessed macroscopically and for adhering magnetic particles. The following conclusions were drawn. Bending tests showed no spots exploded on sample surfaces or any other defect, and plastic deformation testing confirmed sufficient weld toughness. These results showed the 1F welding method has no shortcomings in terms of bending performance.

Study on the Precision Cold Forging for Steering Yoke of Automobiles (자동차 Steering Yoke의 정밀냉간단조에 대한 연구)

  • 민동균
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.120-123
    • /
    • 1999
  • The precision cold forging process for steering yoke of automobile has been analysed by using rigid-plastic finite element analysis code DEFORM-3D Also the experiment has been performed through the optimized process. Until now steering yoke has been largely manufactured by hot forging or welding of forged head and shaft parts because of technical difficulty. the study has shown successful results of the precision cold forging through the proper selection of the process.

  • PDF

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding (Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Hyun-Su;Kim, Jun-Hyung;Oh, Ik-Hyun;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

Behavior of ductile crack initiation with strength mismatch from notch root (강도적 불균질재의 노치 표면에서의 연성크랙 발생 거동)

  • 안규백;대연윤;방한서;풍전정남
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.246-248
    • /
    • 2004
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

The ductile crack initiation behavior of strength mismatch by a location of notch root (노치위치의 변화에 따른 강도적 불균질재의 연성크랙 발생 거동)

  • An, Gyu-Baek;Dae, Jeon-Chung;Bang, Han-Seo;PungJeon, Jeong-Nam
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.253-255
    • /
    • 2005
  • It has been well known that ductile fracture of steels are accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality. In this study evaluate the criterion for ductile crack initiation in strength mismatch specimen effect of location of notch root.

  • PDF

Variation of Residual Welding Stresses in Incoloy 908 Conduit during the Jacketing of Superconducting Cables

  • Lee, Ho-Jin;Kim, Ki-Baik;Nam, Hyun-Il
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.71-75
    • /
    • 2003
  • The conduit fer superconducting cable is welded and plastically deformed during the jacketing process to make the CICC (Cable-in-Conduit-Conductors) fer a fusion magnet. The jacketing process of KSTAR (Korea Superconducting Tokamak Advanced Research) conductors is composed of several sequential steps such as rounding, welding, sizing, and square-rolling. Since the welded zone in Incoloy 908 conduit is brittle and easy to have flaws, there may be a possibility of stress corrosion cracking during the heat treatment of coil when both the induced tensile residual stress and the concentration of oxygen in the furnace are sufficiently high. The steps of the jacketing process were simulated using the finite element method of the commercial ABAQUS code, and the stress distribution in the conduit in each step was calculated, respectively. Furthermore, the variations of residual welding stresses through the steps of the jacketing process were calculated and analyzed to anticipate the possibility of the stress corrosion cracking in the conduit. The concentrated high tensile residual welding stresses along the welding bead decrease by the plastic deformation of the following sizing step. The distribution in residual stresses in the conductor for magnet coil is mainly governed by the last step of square-rolling.