• Title/Summary/Keyword: Plastic Welding

Search Result 427, Processing Time 0.025 seconds

Real-Time Evaluation of Friction Weld Quality of Small-Type Hydraulic Valve Spool by Acoustic Emission (AE에 의한 소형 밸브스풀 마찰용접 품질의 실시간 평가)

  • 오세규;오정환;전태언;김경균;오명석
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding of special hydraulic valve spool of 16mm in diameter. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation periods of the welding and the tensile strength and other properties of the welded joints of $\phi16$ valve spool as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding.

  • PDF

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

A Study of the Residual Stress Characteristics of FCAW Multi-Pass Butt Joint for an Ultra-Thick Plate (극후판 다층 FCAW 맞대기 용접부의 잔류응력 특성에 관한 연구)

  • Bang, Hee-Seon;Bang, Han-Sur;Lee, Yoon-Ki;Kim, Hyun-Su;Lee, Kwang-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.62-66
    • /
    • 2010
  • The goal of this work is to establish the reliability of FCA welded joints for high strength EH36-TMCP ultra thick plate. For this, heat conduction and thermo elasto-plastic analyses have been conducted on a multi-pass, X-groove, butt-joint model to clarify the thermal and mechanical behavior (residual stresses, magnitude of the stresses, and their production and distribution mechanisms) of the weld joint. In addition, the results of the welding residual stress obtained from thermo elasto-plastic analysis was verified and compared with results obtained by XRD analysis.

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate (극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

A Study on Welding Deformation of thin plate block in PCTC (PCTC 박판 블록 용접 변형에 관한 연구)

  • Kang, Serng-Ku;Yang, Jong-Su;Kim, Ho-Kyeong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

Thermal Elastic-Plastic Analysis of Strength Considering Temperature Rise due to Plastic Deformation by Dynamic Leading in Welded Joint (동적하중하에서의 용접이음부의 강도적특성에 대한 온도상승을 고려한 열탄소성 해석)

  • 안규백;망월정인;대전흉;방한서;농전정남
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.68-77
    • /
    • 2003
  • It is important to understand the characteristics of material strength and fracture under the dynamic loading like as earthquakes to assure the integrity of welded structures. The characteristics of dynamic strength and fracture in structural steels and their welded joints should be evaluated based on the effects of the strain rate and the service temperature. It is difficult to predict or measure temperature rise history with the corresponding stress-strain behavior. In particular, material behaviors beyond the uniform elongation can not be precisely evaluated, though the behavior at large strain region after the maximum loading point is much important for the evaluation of fracture. In this paper, the coupling phenomena of temperature and stress-strain fields under the dynamic loading was simulated by using the finite element method. The modified rate-temperature parameter was defined by accounting for the effect of temperature rise under the dynamic deformation, and it was applied to the fully-coupled analysis between heat conduction and thermal elastic-plastic behavior. Temperature rise and stress-strain behavior including complicated phenomena were studies after the maximum loading point in structural steels and their undermatched joints and compared with the measured values.

Estimation of Plate Deformation in Thermal Processing using the Eigenstrain Concept (고유변형율의 개념을 이용한 열가공공정 시 판 변형 예측)

  • 손광재;양영수;장상균
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2003
  • In the present work, a formula for plate deformation produced by line heating, in terms of process parameters such as heat input and plate dimensions, is developed analytically using an eigenstrain concept. The residual deformation that was due to thermal process was depends on the magnitude and region of plastic strains at heating zone. The magnitude of plastic strains was determined by disk model and its region was calculated using the Rosenthal"s solution. The vertical displacement of the plate was analyzed by using an infinite laminated plate theory to consider a cuboidal inclusion with an eigenstrain. Comparison of the calculated results and experimental data shows the accuracy and validity of proposed method.thod.

Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints (이종마찰 접합계면부의 소성유동 방향성 및 강도 평가)

  • Oh, Jung-Kuk;Sung, Back-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.