• Title/Summary/Keyword: Plastic Mode

Search Result 462, Processing Time 0.026 seconds

Manufacturing of an FBG sensor imbedded small wind turbine blade (광섬유 격자센서 내장형 소형 풍력발전기 날개 제작)

  • Kim, Chang-Hwan;Yun, Jin-Young;Kim, Hyun-Gyu;Kim, Kwan-Soo;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • A Fiber Bragg Grating (FBG) sensor imbedded small wind turbine blade was manufactured to experimentally investigate the feasibility to embed FBG sensors between layers of glass fiber to monitor dynamic strains of the wind turbine blade. The blade which is similar to a commercial 300 W wind turbine blade was manufactured with glass fiber as a reinforcement and epoxy resin as base material. A total of five FBG sensors including one temperature sensor were imbedded in the blade to sense mechanical strain and temperature. While manufacturing the blade, residual strain and temperature that occurred in the small wind turbine blade were monitored using the imbedded FBG sensor array. To examine the sensor performance, an impact test was carried out. The experimental results from the FBG sensors were close to those from electrical strain gages mounted on the blade root surface. The mode shapes of the blade were analyzed also using a commercial Ansys simulation with a model obtained from a three dimensional laser scanning of the blade.

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF

Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

  • Xiao, Hongxing;Wang, Xiaomin;Long, Chongsheng;Tian, Xiaofeng;Wang, Hui
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1733-1739
    • /
    • 2017
  • Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline $U_{0.5}Th_{0.5}O_2$ solid solution with the Born-Mayer-Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline $U_{0.5}Th_{0.5}O_2$ exhibited a breakdown in the Halle-Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of $U_{1-y}Th_yO_2$ solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline $U_{0.5}Th_{0.5}O_2$ was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure $UO_2$.

A Finite Eelement Analysis of Joint Behavior of Rock Masses (암반절리의 거동에 대한 유한요소해석)

  • ;;Kim, Moon Kyum;Hwang, Dae Jin
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.59-67
    • /
    • 1989
  • Effect of joints which pre-exist in the rock mass on the behavior of underground structures is studied. A finite element program is developed using a constitutive mode for rock masses exhibiting nonlinear anisotropic behavior. The initial loading scheme combined with reduced region of analysis is employed to minimize the problem size. A circular tunnel within rock mass is analyzed and the results are compared with those of elasto-plastic analysis to verify that the program is reasonable. The effect of joint direction is also analyzed in regard to stress relaxation, displacement, and deformation shape. It is concluded that the joint direction has significant influence on the nonlinear behavior of rock masses such that the vicinity of tunnel perpendicular to the direction of the joints is stressed to slide. It is also observed that the circular shape deforms to an elliptical shape with a major axis in the joint direction.

  • PDF

Evaluation on Flexural Performance of Precast Decks with Ribbed Joint by FEM (유한요소해석에 의한 요철형 이음단면을 갖는 프리캐스트 바닥판의 휨성능 평가)

  • Oh, Hyun-Chul;Chung, Chul-Hun;Kang, Myoung-Gu;Park, Se-Jin;Shin, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, a non-linear FEM model is presented to predict the static flexural performance of precast bridge decks with ribbed joint and is verified with previous experiment results through comparison. The several theory of material properties were applied to each mechanical properties in FEM model and FEM model's input variables were determined through experiment result and parametric study. The FEM results showed good accuracy in predicting the structural performance of the specimens and FEM model's average error rate was 5%. Also, each specimen's cracking aspect and failure mode can be predicted through FEM's plastic strain distribution. Thus, this FEM model can be used effectively for predicting the ultimate behavior and parametric study to development of design formula for joint.

Bond-Slip Model of Interface between CFRP Sheets and Concrete Beams Strengthened with CFRP (탄소섬유시트로 보강된 콘크리트보의 경계면 부착-슬립모델)

  • Kim, Sung-Bae;Kim, Jang-Ho Tay;Nam, Jin-Won;Kang, Suk-Hwa;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.477-486
    • /
    • 2008
  • External bonding of carbon fiber reinforced plastic sheets has recently emerged as a popular method for strengthening reinforced concrete structures. The behavior of CFRP-strengthened RC structure is often controlled by the behavior of the interface between CFRP sheets and concrete. In this study, a review of models on bond strength, bond-slip, and interfacial stresses has been first carried out. Then a new bond-slip model is proposed. The proposed bond-slip model has bilinear ascending regions and exponential descending region derived from modifications mode on the conventional bilinear bond-slip model. The comparison of the results with those of existing experiment researches on bond-slip models indicate good agreements.

Formulation of Generalized Hoek-Brown Model and Development of Rounded Hoek-Brown Model (일반화된 Hoek-Brown 모델의 정식화 및 Rounded Hoek-Brown 모델의 개발)

  • Kim Bum-Sang;Kwon O-Soon;Jang In-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.37-43
    • /
    • 2005
  • Hoek-Brown model, which was developed in order to predict the behavior of rock mass, has widely been utilized and revised by many researchers to solve various problems encountered in tunnelling and slope stability analysis. However, there is no schematic investigation on the application of the Hoek-Brown model to numerical analysis including finite element simulations. In this paper the Hoek-Brown model was formulated as a constitutive model according to the procedure of generalized plasticity theory, and a Rounded Hoek-Brown model, which could overcome the numerical difficulties by modifying the edge part of the yield surface as a curve shape, was newly proposed. The new model could satisfy the requirements as an elasto-plastic constitutive soil model and follow the yield surface of the original Hoek-Brown model in the compression mode. The constitutive equation for the proposed model herein was established and presented to be applicable to the generalized nonlinear finite element analysis.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Development of a CAD/CAM System for the Die Having Complex Geometric Solid Shape - for Rotary Blade as an Example - (자유곡면물체(自由曲面物體)의 금형설계(金型設計) 및 제작(製作)의 자동화(自動化)를 위한 CAD/DAM - 로우터리 경운(耕耘)날을 중심(中心)으로 -)

  • Kim, Soung Rai;Kim, Ki Dae
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 1995
  • The CAD/CAM system for the manufacturing automation is the newest technology in mechanical engineering area and becomes the important research subject nowadays. Most of all hardwares and softwares for the CAD/CAM system used in the our manufacturing companies such as automobile company are developed by the foreign country and the purchasing price of them is very expensive but their applicability to a certain area is very limited. This study was conducted to develope a CAD/CAM system for the design and the automatic manufacturing of the iron pattern shaped with 3 - dimensional free curved surface, and to test its applicability to the design and the manufacturing of the rotary blade. The results obtained from the study are as follow; 1. The CAD system which can process graphic procedures from the free curved surface shaped data was developed with personal computer. 2. The CAM main program was developed. This main program could produce CL data from CAD data file by checking the tool interference according to the cutting mode. 3. The sub. program which can simulate the tool trace from the CL data was developed. 4. The post processor for the Deckel FP2NC NC milling machine from CL data file was developed and the sub program could transmit NC program through modem to NC milling machine was developed. 5. The developed CAM system seemed to be applicable to any other system. Because the measuring results of the cross sectional thickness of the plastic model from the manufacturing iron pattern by the system showed that this system could properly check the tool interference. 6. In took 75~90 hours to manufacture two iron patterns of rotary blade. For the sake of convenience in applying to the other systems, this system was developed in BASIC and FORTRAN computer language and minimum portion of machine language as possible.

  • PDF

Automatic Control System for Cultivation Environment of Crops (농작물 육성에 필요한 환경 자동제어 시스템)

  • Ahn, Woo-young;Lee, Hyun-chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2167-2171
    • /
    • 2016
  • The purpose of the cultivated crops have been changes in the aim of improving quality production. In recent years, as people's attention on health, the demand for healthy crops such as mushrooms gradually increased. In the process of mushroom factory production, regulation of environmental factors directly affects the yield and quality of mushroom. In related to the methods of mushroom cultivation, the recent technologies apply the new technology such as sensors and IT convergence services. And then cultivating mushroom is managed effectively. Farmers use plastic greenhouse cultivation mode more and more in order to reduce the impact of outdoor environment on crop cultivation, which requires farmers to adjust the greenhouse temperature at any time. But the majority of farmers still use a thermometer to measure temperature. This paper constructs an environment that can automatically adjust the temperature, so as to measuring temperature in real time, improving the efficiency of the farm work, and reducing unnecessary labor.