• Title/Summary/Keyword: Plastic Greenhouse

Search Result 310, Processing Time 0.032 seconds

Effects of Elevated Spring Temperatures on the Growth and Fruit Quality of the Mandarin Hybrid 'Shiranuhi' (봄철 가온처리가 부지화의 생장과 과실품질에 미치는 영향)

  • Moon, Young-Eel;Kang, Seok-Beom;Han, Seung-Gab;Kim, Yong-Ho;Choi, Young-Hun;Koh, Seok Chan;Oh, Soonja
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.459-469
    • /
    • 2015
  • The effects of elevated spring temperatures on the growth and fruit quality of the mandarin hybrid 'Shiranuhi' [(Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata] were investigated in plastic greenhouses, to develop a cropping system to improve the quality of the fruit and increase the income of growers on Jeju Island, South Korea. Under conditions of elevated temperature I ($25/15^{\circ}C$, day/night) and elevated temperature II ($28/18^{\circ}C$, day/night) during early spring, budburst was advanced by 11 and 15 d, and full bloom by 22 and 45 d, respectively, compared to those of the plants grown at ambient air temperature in a plastic greenhouse. Elevated temperatures decreased the number of spring shoots but increased mean spring shoot length and leaf area. Growing 'Shiranuhi' trees at elevated temperatures resulted in increases in mean fruit weight and fruit L/D ratio (> 1.0). In addition, fruit color development was significantly advanced in trees grown under elevated temperatures during early spring, which allowed the fruit to be harvested 1-2 months earlier than trees grown under ambient air temperature. Fruit soluble solids content (SSC) and titratable acidity (TA) at harvest were similar between elevated temperature I and ambient air temperature, but were significantly higher than at elevated temperature II. Considering fruit quality, harvest time, and yield, the elevated temperature treatment regime of $25/15^{\circ}C$ (day/night) during early spring could be useful for cultivation of the mandarin hybrid 'Shiranuhi' to increase the income of growers.

Proper Application Concentration of Oleic Acid for Eco-friendly Control of Whiteflies by Two-fluid Fogging System in Greenhouses (이류체 포그 시스템을 이용한 친환경적 가루이 방제시 올레산의 적정 농도)

  • Kim, Sung Eun;Lee, Sang Don;Lee, Moon Haeng;Sim, Sang Youn;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.299-304
    • /
    • 2012
  • In this work, we experimented with the two-fluid fogging system that eco-friendly prevents whiteflies in greenhouses in order to find the optimal concentration of oleic acid supplied through the system and to evaluate the control value of three consecutive treatments. The first experiment, which was to find the optimal concentration of oleic acid, used "Dotaerang Gold" tomatoes grown in stand-alone plastic greenhouse at Buyeo Tomato Experiment Station. We tested three levels of concentration of oleic acid, which were 0, 2000, and 4000 ppm. The second experiment, which was to evaluate the control value of three consecutive treatments of oleic acid, used "Rokusanmaru" tomatoes grown in Venlo type glasshouse at Gyeonggi-Do Agricultural Research & Extension Services. In this experiment, oleic acid of 2000 ppm was applied three times with two days intervals. The number of whiteflies was counted 2 two days after the last application of oleic acid. Even when oleic acid was not being applied, the two-fluid fogging system was run from 9:00 am to 5:00 pm whenever the temperature is higher than $25^{\circ}C$ or the humidity is lower than 75%. In the first experiment, the control value was 81.6% with 2000 ppm of oleic acid and 93.6% with 4000 ppm. It means that the higher the concentration is, the greater the control value. In the second experiment, 2000 ppm treatment resulted in 85.8% of the control value, which is higher than the required standard for insecticides. Hence, spraying oleic acid with the concentration of 2000 ppm three times with two days intervals turned out to be a very effective in the eco-friendly prevention of whitefly.

No-Tillage Agriculture of Korean-Style on Recycled Ridge II. Changes in Physical Properties : Water-Stable Aggregate, Bulk density, and Three Phase Ratio to Retain Water at Plastic Film Greenhouse Soil in No-Tillage System (두둑을 재활용한 한국형 무경운 농업 II. 시설 무경운 토양의 물리적 특성 : 입단과 용적밀도 및 삼상변화)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Sun-Kook;Kim, Hee-Kwon;Kim, Hyun-Woo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.719-733
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of "No-tillage agriculture of Korea-type on recycled ridge". From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was $1.10MG\;m^3$ at tillage and $1.30MG\;m^3$ at one year of no-tillage. Bulk density of top soil was $1.14MG\;m^3$ at two years and $1.03MG\;m^3$ at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.

Establishment of optimal conditions for micropropagation by node culture and multiple shoots formation from sucker explants of thornless Blackberry (Rubus fruticosus L. cv. BB21) (가시없는 블랙베리(Rubus fruticosus L. cv. BB21)의 근맹아를 이용한 다경유도와 절간배양을 통한 식물체 증식조건의 확립)

  • Lee, Kang Seop;Kim, Hyo Jin;Park, Dae Hyun;Oh, Seung Cheol;Cho, Han Jig;Kim, Ee Youb
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.110-116
    • /
    • 2018
  • This study was conducted to develop a simple, rapid, and reliable method for in vitro propagation of disease-free and true-to-type clones from sucker explants of thornless blackberry (Rubus fruticosus L. ${\times}$ R. parvifolius L.). To induce multiple shoots, the sucker explants were sterilized in 1% NaOCl solution, and then were aseptically cultured on the full and 1/2 MS solid medium supplemented with BAP (0.1, 0.5, 1.0, 2.0 mg/L). After six weeks of culture, the highest frequency (85.4%) of shoot formation from sucker explants was obtained on the full-strength MS medium with 1.0 mg/L BAP. Node explants obtained from multiple shoots were cultured on the various media of full- or half-strength of AD, B5, MS, SH, QL, WPM media, respectively. After 30 days of culture, plant growth was good on the half-AD, half-QL medium. After 90 days of culture, plant growth was good on the full MS and full SH medium. The survival rate of the plantlets after transfer to plastic pots containing soil mixture (sand: soil: vermiculite was 1:1:1, vol.) in the greenhouse was 98%. The results indicate that a multiple-shoot procedure can be applied for an efficient mass propagation of Rubus fruticosus L. ${\times}$ R. parvifolius L.

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Assessment of Physiological Activity of Entomopathogenic Fungi with Insecticidal Activity Against Locusts (풀무치에 대하여 살충활성을 보유한 곤충병원성 진균의 생리활성 평가)

  • Lee, Mi Rong;Kim, Jong Cheol;Lee, Se Jin;Kim, Sihyeon;Lee, Seok Ju;Park, So Eun;Lee, Wang Hyu;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.56 no.3
    • /
    • pp.301-308
    • /
    • 2017
  • Locusts, Locusta migratoria (Orthoptera: Acrididae) are periodical unpredictable agricultural pests worldwide and cause serious damage to crop production; however, little consideration has been given to the management of this pest. Herein, we constructed a locust-pathogenic fungal library and confirmed that some fungi could be used as resources for locust management. First, the entomopathogenic fungi were collected from sampled soils using a Tenebrio molitor-based baiting system. For the locust assay, a locust colony was obtained from the National Institute of Agricultural Science and Technology. A total of 34 entomopathogenic fungal granules, which were produced by solid cultures, were placed in the plastic insect-rearing boxes (2 g/box) and nymphs of locust were contained in the box. In 3-7 days, mycosis was observed on the membranous cuticles of the head, abdomen, and legs of locusts. In particular, Metarhizium anisopliae, M. lepidiotae, and Clonostachys rogersoniana exhibited high virulence against the locust. Given that the 34 isolates could be used in field applications, their conidial production and stability (thermotolerance) were further characterized. In the thermotolerance assay, Paecilomyces and Purpureocillium isolates had higher thermotolerance than the other isolates. Most of the fungal isolates produced ca. >$1{\times}10^8conidia/g$ on millet grain medium. In a greenhouse trial, the granular application of M. anisopliae isolate on the soil surface resulted in 85.7% control efficacy. This work suggests that entomopathogenic fungi in a granular form can be effectively used to control the migratory locust.

Influence of Daytime Temperature on the Time Required for Fruit Harvest and Yield of Hot Pepper (주간온도가 고추의 수확 소요일수 및 수량에 미치는 영향)

  • Lee, Sang-Gyu;Choi, Chang-Sun;Lee, Jun-Gu;Jang, Yoon-Ah;Nam, Chun-Woo;Lee, Hee-Ju;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1181-1186
    • /
    • 2013
  • Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, Chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This study examined the influence of air temperature during seedling growth on the time required to reach the first fruit maturity and yield of hot pepper. Seedling plants of 'Super Manita' hot pepper was grown in temperatures $2.5^{\circ}C$ and $5.0^{\circ}C$ lower than the optimum temperature (determined by the average of temperatures for the past 5 years). Seedlings were transplanted into round plastic containers (30-cm diam., 45-cm height) and were placed in growth chambers in which the ambient temperature was controlled under natural sunlight. The growth of seedlings under lowered temperatures was reduced compared to the control. The mineral (K, Mg, P, N) concentrations in the leaf tissues were higher when plants were grown with the ambient temperature $2.5^{\circ}C$ lower than the optimum, regardless of changes in other growth parameters. Tissue calcium (Ca) concentration was the highest in the plants grown with optimum temperature. The carbohydrate to nitrogen (C/N) ratio, which was the highest (18.3) in the plants grown with optimum temperature, decreased concomitantly as the ambient temperature was lowered $2.5^{\circ}C$ and $5.0^{\circ}C$. The yield of the early harvested fruits was also reduced as the ambient temperature became lower. The first fruit harvest date for the plants grown with optimum temperature (June 27) was 13 days and 40 days, respectively, earlier than that in plants grown with $2.5^{\circ}C$ (July 10) and $5.0^{\circ}C$ (Aug 6) lower ambient temperatures. The fruit yield per plant for the optimum temperature (724 g) was the greatest compared to those grown with $2.5^{\circ}C$ (446 g) and $5.0^{\circ}C$ (236 g) lower temperatures. The result of this study suggests that the growers should be cautioned not to transplant their hot pepper seedlings too early into the field, since it may delay the time of first harvest eventually reducing total fruit yield.

Effects of Cutting Time, Auxin Treatment, and Cutting Position on Rooting of the Green-wood Cuttings and Growth Characteristics of Transplanted Cuttings in the Adult Prunus yedoensis (왕벚나무 성목 녹지삽목에서 삽목시기, 옥신처리 및 삽수부위가 발근에 미치는 영향과 이식 삽목묘의 생육특성)

  • Kim, Chang-Soo;Kim, Zin-Suh
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • This study was conducted to develop an efficient mass propagation method for the mature $Prunus$ $yedoensis$ Matsumura (43 to 58 years old). Cutting was conducted depending on cutting time, auxin treatments (IBA and NAA treatments mixed with talc powder), and cuttings position on shoots in a plastic house equipped with a fog system without heating. Rooted cuttings were transplanted to a nursery bed, and their growth characteristics were investigated in order to check whether the cuttings are successful or not for roadside tree planting. The average rooting rate was highly significant ($P$ < 0.0001) in all treatments: cutting on June 1st (61.4%) was more than two times greater in rooting rate than that on August 1st (23.6%); IBA 1,000 $mg{\cdot}L^{-1}$ (90.8%) and IBA 500 $mg{\cdot}L^{-1}$ (89.2%) showed much greater rooting rates than those of the other treatments; upper part of the cuttings treated with IBA 1,000 $mg{\cdot}L^{-1}$ showed the highest rooting rate, 96.7%. The interactions among treatments in the average rooting rate were also significant. There were significant differences ($P$ < 0.0001) among the auxin treatments in the survival rate of leafed cuttings transplanted to a nursery bed. The average survival rate was 46.5%, and IBA 1,000 $mg{\cdot}L^{-1}$ treatment was the highest in leafed cuttings 79.2%, but most of leafless cuttings were dead. There were significant differences ($P$ < 0.0001) among the cuttings, grafts, and in the seedlings height, diameter at root collar, the number of roots, branches, and leaves, etc., and the cuttings was the best. We can expect a possibility of mass propagation of improved $P.$ $yedoensis$ Matsumura and a high planting survival rate through the transplanting of cuttings to a nursery bed in which the cuttings should be the following conditions: cutting in June to July, use of the upper part of cuttings, IBA treatment, and rooting in August in a cutting-greenhouse equipped with a fog system.