• Title/Summary/Keyword: Plastic Gear

Search Result 68, Processing Time 0.023 seconds

Preform Design in forging of Spline of Side Gear by the FEM (강소성 유한요소법의 역추적기법을 활용한 차동사이드기어의 스플라인 성형에 관한 연구)

  • 김상현;강범수;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.129-136
    • /
    • 1994
  • Differential side bevel gears have been produced by machining process, but recently cold forging process for the bevel gear is under development in domestic industry. This study presents the possibility to form not only bevel gear but also spline gear at the same time using the experiment and numerical analysis. The preform shape is designed to form both bevel gear and spline gear simultaneously by the backward tracing scheme of the rigid-plastic finite element method(FEM). The experimental results confirm that the numerically-designed preform is satisfactory to form both bevel gear and spline gear. It is noted that the backward tracing scheme is helpful in designing preforms.

  • PDF

Wear Characteristics of Plastic Pinion Against Steel Gear for Different Pitch Line Velocities (운전속도에 따른 플라스틱기어의 마멸특성)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1720-1729
    • /
    • 2001
  • Wear characteristics of Nylon and acetal pinions against steel gears for different pitch line velocities was studied with a power circulating gear test rig under unlubricated condition. Specific wear rate was measured as a function of tooth number, module, tooth width and total revolution. The worn tooth surfaces were examined with a profile projector. The Nylon pinion showed lower specific wear rate than the acetal pinion. However, the Nylon pinion was fractured at high tooth loads, whereas the acetal pinion exhibited a steady wear behavior. The wear characteristics of Nylon pinion varied significantly with the Pitch line velocity. Wear occurred most severely at the tooth tip and the region immediately below the pitch line of pinion. The dominant wear mechanisms were adhesion and abrasion.

A Comparisonal Anlaysis among the Processes of Gear Blank (기어 블랭크 성형공정의 비교 해석)

  • 최호준;김장군;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.174-184
    • /
    • 1996
  • Two methods for cold extrusion processes to produce an axisymmetric steel gear blank are investigated for comparing each other. The "classical" forming method consisting of four operations is selected first to be simulated using the rigid-plastic finite element method and uses single-die presses. The other using a fully automated transfer headers can produce the final part without interannealing. The final products must be checked at the design criteria such as area reduction, the extrusion ratio and punch diameter to depth ratio, especially punch buckling by simulations. FEM analysis is performed mainly for strain distribution, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will provide good design criteria in the future work to advance the manufacturing process.

  • PDF

Injection Molding Simulation Case of Plastic Gear using Planets (Planets을 사용한 플라스틱 Gear의 사출성형 해석 사례)

  • 김태훈;정우식;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.131-134
    • /
    • 2001
  • 플라스틱 성형 분야는 최근 급속도로 성장한 첨단기술 분야이다. 플라스틱 성형 분야는 종래 전문가의 경험에 주로 의존해 왔으나 시장의 요구가 점점 고급화, 다양화되어감에 따라 경험적인 내용에만 의존해서는 요구를 충족시키기 어렵게 되었다. 이러한 배경에 의하여 플라스틱 성형 분야에 CAE 기법이 도입되었고 괄목할 만한 발전을 이루고 있다. 본 논문에서는 플라스틱분야에서 개발된 최첨단 상용 CAE 소프트웨어인 Planets을 사용하여 기존의 상용 소프트웨어로서는 충분한 정밀도를 얻기 어려웠던 플라스틱 Gear에 대한 사례연구를 수행하였다.

A Study on the Surface Roughness Variation of Spur Gear Teeth as a function of the Surface Treatment (표면처리에 따른 평기어 치의 표면거칠기 변화에 관한 연구)

  • 유장열;이성철;권오관;정태형
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.67-74
    • /
    • 1991
  • The contact characteristics of gear tooth surface were studied by using the gear test rig of power circulation type. The effect of surface treatment conditions and revolutions on the tooth surface roughness parameters, and the relations between the lubrication conditions and tooth surface conditions, in spur gear sets wear considered. The result show that heat treatment of gear have an important effect upon fatigue strength and tooth surface conditions, and surface asperities undergo a circulating process of creation and destruction because of the influnce of plastic deformation. And surface roughness conditions at the tooth tips accompany a great deal of variation in running-in stage. According to the lubrication analysis and the study the tooth surface have a greater effect on surface demage than lubrication conditions, in mixed-lubrication condition.

FEM Analysis of Closed-Die Forging of a Bevel Gear (베벨기어 페쇄단조의 유한요소해석)

  • Park, Jong-Jin;Lee, Jung-Hwan;Lee, Young-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2458-2467
    • /
    • 1996
  • The rigid-plastic finite element analysis was performed for analysis of ofhot forging and cold sizing of a bevel gear. Two dimensional analysis was carried out to investigate the defect occurrence on vertical symmetric planes during hot forging and three dimensional analysis was to understand the filling behavior on horizontal planes during cold sizing. The involute curve of a tooth was approximated by a circle for convenience in the present analysis. In order to estimate the elastic deformation of the gear and dies during cold sizing, linear elastic finite element analysis was performed. Results of the analysis can be used to predict grain flows and strength distributions in the forged gear, and to design dies and an appropriate preform for the cold sizing.

A Study on the Concave and Pressure Angle Error of Gear Finish Roll Forming (기어전조의 기어 형상 및 압력각오차에 관한 연구)

  • Jang, J.H.;Kim, J.S.;Bae, H.J.;Uematsu, S.;Cho, S.H.;Lyu, S.K.
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.13-18
    • /
    • 2008
  • This study deals with finish roll forming by forced displacement can be conceived as a method of eliminating errors in conventional form rolling under constant loads. This method produces a high-precision tooth profile by low-speed form rolling when a high rigid screw or cam is used at the pressurized section. Tooth profile is decided in the beginning of roll forming and ${\delta}_{max}$ mainly increases if the number of roll forming process is increased. Gear class is improved by one or two class after roll forming if the gear has convex type error and pressure angle error in KS 4 class. If the gear have concave type error and pressure angle error and pressure angle error, gear class is not improved in theory, but improved a little in practice. In the finishing roll forming, it inevitably yields both the concaving of tooth profile and plastic deflection of addendum of teeth. Experiments show that the concaving and the plastic deflection are successfully reduced, the accuracy of tooth profile reaches to KS 0 class.

Finite Element Method on Die Deformation and Elastic Spring-Back Analysis for Product of Helical Gear (헬리컬 기어의 금형변형 및 탄성회복에 대한 유한요소해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.237-240
    • /
    • 1999
  • The elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products. the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Prediction of Deformation and Load in Gear Forging (기어단조시 변형과 하중의 예측)

  • 박종진;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.156-164
    • /
    • 1996
  • As high capacity and precision forging presses have become available, it is possible to manufacture gears by forging technology. In gear manufacturing by forging, however, there are problems of designs of ides and preforms. In the present paper, two exampels are presented to show how the rigid plastic finite element method can be utilized to overcome the problems. The examples are spur gear forging and interanl-apline gear forging. Both analyses are three dimensional using eight node linear block elements with approximation that the involute curve can be represented by lines and arcs. Results of the analyses include metal flow in dies and required load during forging which aid to decide proper designs.

  • PDF

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF