• Title/Summary/Keyword: Plastic Damage Model

Search Result 235, Processing Time 0.023 seconds

IN VITRO DETERMINATION & QUANTIFICATION OF HYDROGEN PEROXIDE PENETRATION DURING NONVITLAL BLEACHING (무수치 표백시술시 치경부를 통한 표백제 누출량의 정량적 측정)

  • Park, Soo-Kyeong;Lee, Chung-Sik;Choi, Han-Seuk
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.19-34
    • /
    • 1996
  • It has been demonstrated that intracoronal bleaching of pulpless teeth may result in cervical root resorption. Several authors postulated that bleaching agents such as hydrogen peroxide penetrated through the dentinal tubules to damage the surrounding tissues that cause cervical root resorption. The purpose of this study was to suggest on in vitro model for direct determination of hydrogen peroxide penetration through CEJ during nonvital bleaching. In addition, this model permit the quantification of the amount of hydrogen peroxide penetrated during the procedure. Freshly extracted intact premolars, removed for orthodontic reasons were used. Root canal treatment was performed in each tooth. And then the outer surface and crown portion of the teeth was sealed with wax leaving the CEJ. The prepared teeth mounted on the wax laminates were placed in plastic assay tubes containing 1.5ml bidistilled water with their entire root, including the CEJ, submerged in the solution. The teeth were dividied into four groups. Thermo group : thermocatalytic bleaching with superoxol Walk group: walking bleaching with sodium perborate & superoxol Combi group : combination of thermocatalytic & walking bleaching Dw group : walking bleaching with sodium perborate & water The bleaching procedure was performed three times. The bleaching intervals were at 3 days. The hydrogen peroxide present in the assay system was added to ferrous ammonium sulfate resulting in ferric ion release. Upon the addition of potassium thiocyanate a ferrithiocyanate complex results, which absorbs light at the wavelength of 467nm. The radicular penetration of hydrogen peroxide in the four groups was assessed directly using spectrophotometer. The amount of hydrogen peroxide in the samples tested is determined by comparing them with a standard curve generated by known amounts of hydrogen peroxide. The results were obtained as follows : 1. In all experimental groups except the Dw group showed lower penetration amount in day 4 than day 1, there was statistical importance in the difference (P<0.05). 2. After 3rd treatment, Thermo group showed slightly increased value and narrow distribution. Walk group showed much more penetration amount and widely dispersed value. Value of Combi group showed wide distribution without regard to treatment time, but value of Dw group evenly distributed. 3. Thermo group, Walk group and Dw group showed a tendency of increasing penetration amount with increasing treatment times(P<0.01), but Combi group revealed no statistically important differences. 4. Combi group showed the highest degree of penetration. Walk group showed lower penetration than Combi group. Thermo group & Dw group showed lower than Walk group. 5. Cervical root permeability to hydrogen peroxide varied from 0 to 35 %.

  • PDF

EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL (백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Soung-Min;Kim, Yun-Hee;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse (온실용 나선철항의 인발저항력 검토)

  • Lee, Bong Guk;Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • This study examined the uplift bearing capacity of spiral steel pegs according to the degree of soil compaction and embedded depth in a small-scaled lab test. As a result, their uplift bearing capacity increased according to the degree of soil compaction and embedded depth. The uplift bearing capacity under the ground condition of 85% compaction rate especially recorded 48.9 kgf, 57.9 kgf, 86.2 kgf and 116.6 kgf at embedded depth of 25 cm, 30 cm, 35 cm and 40 cm, respectively, being considerably higher than under other ground conditions. There were huge differences in the uplift bearing capacity of spiral steel pegs according to the compaction conditions of ground. Their maximum uplift bearing capacity was 116.6 kgf under the ground condition of 85% compaction rate and at embedded depth of 40 cm, and it is very high considering the data of spiral steel pegs. It is thus estimated that wind damage can be effectively reduced by careful maintenance of ground condition surrounding spiral steel pegs. In addition, spiral steel pegs will be able to make a contribution to greenhouse structural stability if proper installation methods are provided including the number and interval according to the types of greenhouse as well as fixation of plastic film. The findings of the study indicate that the optimal effects of spiral steel pegs for greenhouse can be achieved at embedded depth of more than 35cm and compaction degree of more than 85%. The relative density of the model ground in the test was 67% at compaction rate of 85%.