• Title/Summary/Keyword: Plasmon

Search Result 463, Processing Time 0.028 seconds

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

A novel surface plasmon resonance sensor without using imaging devices (영상 소자를 사용하지 않는 새로운 표면 플라즈몬 공명 센서)

  • Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.347-351
    • /
    • 2006
  • A novel surface plasmon resonance sensor, which can measure 2-dimensional array of immobilized ligands without using imaging devices such as CCD, has been proposed. Regular surface plasmon resonance can be directly used due to the insertion of additional layers with different thickness, on which each ligands are immobilized. Surface plasmon resonance signals are separated depending on the thickness of additional layers. The possibility of multi-sensing capability of the proposed surface plasmon resonance sensor has been verified by the modeling that is based on Fresnel reflection model.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.

Synthetic Strategy and Optical Property Characterization of Complex Nanorods: Plasmon Wave Guide and Solar Cell

  • Park, Sung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.111-111
    • /
    • 2012
  • In this talk, we represent a novel approach to investigating intra-nanorod surface plasmon coupling with control over block compositions. The multi-component rod-like nanostructures, which consist of optically active components (Au and Ag) and optically less active component (for example, Ni) in UV-vis-NIR spectral window, showed interesting optical response depending on each block length and the total length of the structure. By controlling the composition and relative lengths of the blocks that comprise these structures, we can tailor the overall optical properties. Depending on the relative fraction of Au and Ag blocks, the intensity of the transverse modes varied without noticeable peak shifts. However, the strong intraparticle surface plasmon coupling resulted in the collective appearance of longitudinal LSP modes, including higher-order modes. The experimental observations were confirmed by theoretical calculation, using a discrete dipole approximation method. In addition, we will briefly discuss how single nanorod solar cells can be synthesized by using by using electrochemical deposition and AAO hard templates.

  • PDF

Analysis of Dielectric-Loaded Surface Plasmon Polariton Waveguides at Telecommunication Wavelengths (광통신 대역에서의 유전체 직각 릿지 표면 플라즈몬 도파로 해석)

  • Jung, Jae-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.43-48
    • /
    • 2010
  • The main features of a dielectric-loaded surface plasmon polariton waveguide are analyzed such as mode effective index and propagation length. These parameters are calculated using the finite element method for different metal-polymer pairs while varying the ridge width and thickness. As a performance metric, we employ the 2D figure of merit including two conflicting parameters i.e. mode effective index and propagation length. The results obtained here allow one to identify the parameter range for realizing the dielectric-loaded surface plasmon polariton waveguide and to choose dimension and material of the ridge for subwavelength confinement and moderate propagation loss at telecom wavelengths.

Determination of Monoclonal Antibodies Capable of Recognizing the Native Protein Using Surface Plasmon Resonance

  • Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.452-456
    • /
    • 2001
  • Surface plasmon resonance has been used for a biospecific interaction analysis between two macromolecules in real time. Determination of an antibody that is capable of specifically interacting with the native form of antigen is very useful for many biological and medical applications. Twenty monoclonal antibodies against the $\alpha$ subunit of E. coli DNA polymerase III were screened for specifically recognizing the native form of protein using surface plasmon resonance. Only four monoclonal antibodies among them specifically recognized the native $\alpha$ protein, although all of the antibodies were able to specifically interact with the denatured $\alpha$ subunit. These antibodies failed to interfere with the interaction between the $\tau$ and $\alpha$ subunits that were required for dimerization of the two polymerases at the DNA replication fork. This real-time analysis using surface plasmon resonance provides an easy method to screen antibodies that are capable of binding to the native form of the antigen molecule and determine the biological interaction between the two molecules.

  • PDF

Broadband Light Absorption Using Gap Plasmon Resonance

  • Ko, Hyungduk;Kim, Jung Hyuk;Lim, Ju Won;Lee, Gi Yong;Jang, Ho Seong;Ko, Doo-Hyun;Han, Il Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.133.2-133.2
    • /
    • 2014
  • A gap surface plasmon resonator have received considerable attention because it can dramatically enhance the absorption of the electromagnetic field. However, whereas most of studies were just focused on the absorption within a narrow range of wavelength, few studies have been performed for the broadband absorption in the visible range. Therefore, in this study, we discuss methods that can induce broadband light absorption using gap plasmon resonance in visible regime. The gap plasmon resonator will offer great potential for appplications to solar cells and bioimaging.

  • PDF

Magnetonic Resistance Properties of Semiconductor Thin Films by Plasmon Effect on Fabricated Si(100) Substrate (플라즈몬 효과에 의한 실리콘 기판위에 증착된 반도체 박막의 자기저항특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.105-109
    • /
    • 2019
  • Plasmons have conductive properties using the effect of amplifying magnetic and electric fields around metal particles. The collective movement of free electrons in metal particles induces and produces the generation of plasmon. Because the plasmon is concentrated on the surface of the nanoparticles, it is also called the surface plasmon. The polarizing effect of plasma on the surface is similar to the principle of surface currents occurring in insulators. In this study, it was found the conditions under which plasma is produced in SiOC insulators and studied the electrical properties of SiOC insulators that are improved in conductivity by plasmons. Due to the heat treatment temperature of thin film, plasma formation was shown differently, metal particles were used with normal aluminium, SiOC thin films were treated with heat at 60 degrees, conductivity was improved dramatically, and heat treatment at higher temperatures was found to be less conductivity.