• 제목/요약/키워드: Plasminogen activator

검색결과 205건 처리시간 0.03초

Smad4 mediates malignant behaviors of human ovarian carcinoma cell through the effect on expressions of E-cadherin, plasminogen activator inhibitor-1 and VEGF

  • Chen, Chen;Sun, Ming-Zhong;Liu, Shuqing;Yeh, Dongmei;Yu, Lijun;Song, Yang;Gong, Linlin;Hao, Lihong;Hu, Jun;Shao, Shujuan
    • BMB Reports
    • /
    • 제43권8호
    • /
    • pp.554-560
    • /
    • 2010
  • Smad4 is involved in cancer progression and metastasis. Using a pair of human syngeneic epithelial ovarian cancer cells with low (HO-8910) and high (HO-8910PM) metastatic abilities, we aimed to reveal the role of Smad4 in ovarian cancer metastasis in vitro. Smad4 was down-regulated in HO-8910PM cell line relative to HO-8910 by implicating Smad4 was probably a potential tumor suppressor gene for ovarian cancer. Re-expression of Smad4 decreased the migration ability and inhibited the invasion capacity of HO-8910PM, while promoted the cell adhesion capacity for HO-8910PM. The stable expression of Smad4 increased the expression of E-cadherin, reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and slightly down-regulated the expression of VEGF. Smad4 suppresses human ovarian cancer cell metastasis potential through its effect on the expressions of PAI-1, E-cadherin and VEGF. Results from current work implicate Smad4 might suppress the invasion and metastasis of human ovarian tumor cells through a TGF-$\beta$/Smad-mediated pathway.

Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells

  • Ko, Hyun Myung;Jin, Yeonsun;Park, Hyun Ho;Lee, Jong Hyuk;Jung, Seung Hyo;Choi, So Young;Lee, Sung Hoon;Shin, Chan Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.679-688
    • /
    • 2018
  • Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.

High Productivity of t-PA in CHO Cells Using Hypoxia Response Element

  • Bae Gun-Won;Jeong Dae-Won;Kim Hong-Jin;Lee Gyun-Min;Park Hong-Woo;Choe Tae-Boo;Kang Seong-Man;Kim Ick-Young;Kim Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.695-703
    • /
    • 2006
  • The dissolved oxygen level of any cell culture environment has a critical effect on cellular metabolism. Specifically, hypoxia condition decreases cell viability and recombinant protein productivity. In this work, to develop CHO cells producing recombinant protein with high productivity, mammalian expression vectors containing a human tissue-type plasminogen activator (t-PA) gene with hypoxia response element (HRE) were constructed and stably transfected into CHO cells. CHO/2HRE-t-PA cells produced 2-folds higher recombinant t-PA production than CHO/t-PA cells in a $Ba^{2+}-alginate$ immobilized culture, and 16.8-folds in a repeated batch culture. In a non-aerated batch culture of suspension-adapted cells, t-PA productivity of CHO/2HRE/t-PA cells was 4.2-folds higher than that of CHO/t-PA cells. Our results indicate that HRE is a useful tool for the enhancement of protein productivity in mammalian cell cultures.

4G/5G and A-844G Polymorphisms of Plasminogen Activator Inhibitor-1 Associated with Glioblastoma in Iran - a Case-Control Study

  • Pooyan, Honari;Ahmad, Ebrahimi;Azadeh, Rakhshan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6327-6330
    • /
    • 2015
  • Background: Glioblastoma is a highly aggressive and malignant brain tumor. Risk factors are largely unknown however, although several biomarkers have been identified which may support development, angiogenesis and invasion of tumor cells. One of these biomarkers is PAI-1.4G/5G and A-844G are two common polymorphisms in the gene promotor of PAI 1 that may be related to high transcription and expression of this gene. Studies have shown that the prevalence of the 4G and 844G allele is significantly higher in patients with some cancers and genetic disorders. Materials and Methods: We here assessed the association of 4G/5G and A-844G polymorphisms with glioblastoma cancer risk in Iranians in a case-control study. All 71 patients with clinically confirmed and 140 volunteers with no history and symptoms of glioblastoma as control group were screened for 4G/5G and A-844G polymorphisms of PAI-1, using ARMS-PCR. Genotype and allele frequencies of case and control groups were analyzed using the DeFinetti program. Results: Our results showed significant associations between 4G/5G (p=0.01824) and A-844G (p = 0.02012) polymorphisms of the PAI-1 gene with glioblastoma cancer risk in our Iranian population. Conclusions: The results of this study supporting an association of the PAI-1 4G/5G (p=0.01824) and A-844G (p = 0.02012) polymorphisms with increasing glioblastoma cancer risk in Iranian patients.

남성 만성기 허혈성 뇌졸중환자의 운동강도 및 시간에 대한 Poor Fibrinolytic Response (Poor Fibrinolytic Response on a Single Bout Exercise Intensity and Time in Male Chronic Ischemic Stroke Patient)

  • 강동연;이혜영;김경
    • The Journal of Korean Physical Therapy
    • /
    • 제25권4호
    • /
    • pp.224-231
    • /
    • 2013
  • Purpose: The purpose of this case study was to investigate three poor fibrinolytic responders with chronic ischemic stroke to acute exercise intensity and time. Methods: Three ischemic stroke patients (male) from the stroke center located at Busan metropolitan area in Republic of Korea volunteered at this study. They performed two single session exercises that were a VO2peak test and a single bout treadmill walking (70-75%HRpeak, 30 min, 50min). Fasting blood samples for determination of tissue Plasminogen Activator (tPA) and Plasminogen Activator Inhibitor-1 (PAI-1) were obtained before, immediately after, 30min after acute exercise. SPSS 12.0 was used for analyzing of data and computing mean and standard deviation, and change rate was conducted between times. Results: In fibrinolytic activity according to the intensity and time of acute exercise, tPA change increased steadily during the recovery stage after the VO2peak in the cases, but PAI-1 activity showed different patterns among the cases. In a single bout treadmill walking (70-75%HRpeak, 30 min, 50min), tPA change increased between 30min and 50min. Conclusion: In conclusion, these results suggest that the exercise prescription for poor fibrinolytic responder with three male chronic ischemic stroke patients without motor disability recommend at 70-75%HRpeak, over 30min.

Production of tissue-type plasminogen activator from immobilized CHO cells introduced hypoxia response element

  • 배근원;김홍진;김기태;김익영
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.257-260
    • /
    • 2002
  • Dissolved oxygen level of cell culture media has a critical effect on cellular metabolism, which governs specific productivity of recombinant proteins and mammalian cell growth However, in the cores of cell aggregates or cell-immobilized beads, oxygen level frequently goes below a critical level. Mammalian cells have a number of genes induced in the lower level of oxygen, and the genes contain a common cis-acting element (-RCGTG-), hypoxia response element (HRE). By binding of hypoxia inducible factor-l (HIF-I) to the HRE, promoters of hypoxia inducible genes are activated, which is a survival mechanism. In this work, to develop a CHO cell capable of producing recombinant proteins in immobilization and high density cell culture efficiently, mammalian expression vectors containing human tissue-type plasminogen activator (t-PA) gene controlled by HRE were constructed and stably transfected into the CHO cells. In $Ba^{2+}$ -alginate immobilization culture, CHO/pCl/dhfr/2HRE-t-PA cells produced 2 folds higher recombinant t-PA activity than CHO/pCl/dhfrlt-PA cells without $CoCl_2$ treatment. Furthermore, in repeated fed batch culture, productivity of t-PA in immobilized CHO/pCI/dhfr/2HRE-t-PA cells was 121 ng/ml/day, total production of 0.968 mg/day at 11 days culture while CHO/pCIIdhfrlt-PA cells was 22.8 ng/ml/day. All these results indicate that HRE is very useful for the enhancement of protein productivity in mammalian cell cultures.

  • PDF

뇌신경세포에서 tPA에 의한 MMP의 발현 조절에 관한 연구 (Study on tPA-mediated MMP Regulation in Rat Neuronal Cells.)

  • 고운철;이선령
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.836-838
    • /
    • 2009
  • 뇌졸중 치료에 사용되는 tPA는 탁월한 혈전 용해 효과를 보이고 있어 혈액의 흐름을 용이하게 하는데 중요한 역할을 한다. 그러나 tPA 치료법은 매우 짧은 시간 내에 사용해야하는 단점과 출혈, 부종과 같은 여러 가지 부작용이 수반될 수 있기 때문에 매우 제한적이다. 이전의 실험 결과에 따르면 tPA의 이러한 양면적인 현상은 MMP의 활성 조절과 관련이 있는 것으로 보고되어 있으나 세포시스템을 활용한 이들의 직접적인 효과나 조절 기전에 대한 연구는 거의 알려져 있지 않다. 본 연구는 임상에서 사용되는 tPA의 부정적인 효과를 극복하기 위한 방안을 모색하고자 tPA와 MMP 활성과의 조절 기전을 살펴보았다. 랫트의 뇌로부터 추출한 신경세포에서 tPA의 처리는 MMP의 발현을 촉진시켰고 저산소상태에서 tPA에 의한 MMP활성 증가가 더욱 가속화되었으며 JNK 신호전달 경로를 통해 조절되는 것을 확인하였다.

Mutation of Angiogenesis Inhibitor TK1-2 to Avoid Antigenicity In Vivo

  • Lee Sang-Bae;Kim Hyun-Kyung;Oh Ho-Kyun;Hong Yong-Kil;Joe Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제14권1호
    • /
    • pp.30-35
    • /
    • 2006
  • Tissue-type plasminogen activator (t-PA) is a multidomain serine protease containing two kringle domains, TK1-2. Previously, Pichia-derived recombinant human TK1-2 has been reported as an angiogenesis inhibitor although t-PA plays an important role in endothelial and tumor cell invasion. In this work, in order to improve in vivo efficacy of TK1-2 through elimination of immune reactivity, we mutated wild type TK1-2 into non-glycosylated form (NE-TK1-2) and examined whether it retains anti-angiogenic activity. The plasmid expressing NE-TK1-2 was constructed by replacing $Asn^{l17}\;and\;Asn^{184}$ with glutamic acid residues. After expression in Pichia pastoris, the secreted protein was purified from the culture broth using S-sepharose and UNO S1-FPLC column. The mass spectrum of NE-TK1-2 showed closely neighboring two peaks, 19631.87 and 19,835.44 Da, and it migrated as one band in SDS-PAGE. The patterns of CD-spectra of these two proteins were almost identical. Functionally, purified NE-TK1-2 was shown to inhibit endothelial cell migration in response to bFGF stimulation at the almost same level as wild type TK1-2. Therefore, the results suggest that non-glycosylated NETK1-2 can be developed as an effective anti-angiogenic and anti-tumor agent devoid of immune reactivity.

인간 신장세포로부터 scu-PA의 경제적 생산을 위한 무혈청 배지의 개발 (The Development of Serum Free Medium for the Economic Production of scu-PA from HEK Cells)

  • 김현규;김현구
    • KSBB Journal
    • /
    • 제9권5호
    • /
    • pp.518-524
    • /
    • 1994
  • Cytodex III 마립담체를 이용하여 무혈청배지에서 인간선장 세포를 배양하였다. 무혈청애지에서 미립담체 표변에 세포들은 정상적으로 부착하고 확 산하면셔 세포들은 담체에서 담체로 이동하여 생육 하였다. 미립담체에 접착 수율은 1%의 혈청 을 포 함된 배지에서는 약 93%인 반면에 무혈청배지에 서는 85% 정도로 나타났다. 접착된 세포의 90% 이상이 유가식 및 연속배양에서 탐체의 표변에 접 착한 후 6시간 후에 확산하며 생육하였다. 유가식 배양에셔 서1포농도와 최대 scu-P A 농도는 각각 $9.1{\times}10^5$ cells/m!와 1790 IU/ml이였고 연속배양에 셔는 각각 $2.5{\times}10^6$ cells/m]와 1820 IU/ml로 나타났다. 또한 저혈청배지에셔는 scu-P A가 tc-P A로의 전환율이 10% 정도로 높은데 비교하여 무혈 청배지에서는 전환율이 4.8%로 낮은 것으로 나타났 다. 이처럼 무혈청배지는 저혈청배지에셔보다 낮은 tc-P A로의 전환율을 유지할 수 있는 이점이 었다.

  • PDF

인체의 자궁암과 간암조직에서의 단백질 분해활성의 변화 (Correlation Between Malignant Phenotypes and Changes in Overall Proteolytic Capacity of Human Cervix and Liver Cancer)

  • 기윤;박상철;하두봉;정진하
    • 한국동물학회지
    • /
    • 제32권1호
    • /
    • pp.48-54
    • /
    • 1989
  • 인체의 자궁암과 간암조직들이 나타내는 몇 종류의 단백질 분해효소들과 Anti-trypsin의 활성도를 정상조직의 것들과 비교하여서, 암의 종양성 형질과 단백질 분해활성의 변화사이에 어떤 상관관계가 있는지를 조사하였다. Casein과 Insulin의 분해 활성도는, 자궁암에서 2-3배 정도 증가하는 반면, 간암에서는 1/2에서 1/5정도로 감소하였다. 이와는 대조적으로, Anti-trypsin의 활성도는 자궁암에서 약 1/10정도로 감소하였고 간암에서는 2배 가량 증가하였다. 한편, Plamin-like enzyme과 Plasminogen activator의 활성도는 자궁암과 간암조직 모두에서 정상 조직에서보다 10-20% 정도 높게 나타났다. 이러한 결과는, 정상조직 내의 단백질 분해활성도가 단백질 분해효소들과 이들의 활성을 저해하는 단백질들의 균형에 의하여 조절됨을 시사하며, 암조직들에서는 각 암조직들의 종양특이성에 따라 단백질 분해효소와 저해단백질들 사이의 균형이 깨어짐에 따라 단백질 분해활성도가 다르게 나타남을 보여준다.

  • PDF