• Title/Summary/Keyword: Plasmid DNA

Search Result 1,000, Processing Time 0.025 seconds

Sequence and phylogenetic analysis of the phnS gene encoding 2-hydroxychromene-2-carboxylate isomerase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77 균주에서 2- hydroxychromene-2-carboxylate isomerase를 암호화하는 phnS 유전자의 염기서열과 상동성 분석)

  • 엄현주;강민희;김영필;김성재;김영창
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Sphingomonas chungbukensis DJ77 is able to metabolize phenanthrene as the sole carbon and energy source. The plasmid pUPX5 includes phnS gene encoding 2-hydroxychromene-2-carboxylate (HCCA) isomerase, which is needed for phenanthrene and naphthanene degradation. We determined the nucleotide sequence of DNA fragment of 3271 bp which included the phnS gene. The fragment included an open reading frame of 594 bp which has ATG initiation codon and TAA termination codon and GGAA ribosomal binding site. The predicted amino acid sequence of the enzyme consists of 198 amino acids. The deduced amino acid sequence of the phnS enzyme exhibited 94% identity with that of the corresponding enzyme in Sphingomonas aromaticivorans F199. The phnS gene is located downstream and in the same operon as phnQ and phnR, encoding a 2,3-dihydroxybiphenyl 1,2-dioxygenase and a ferredoxin component of biphenyl dioxygenase, respectively.

Molecular Cloning, Chromosomal Integration and Expression of the Homoserine Kinase gene THR1 of Saccharomyces cerevisiae (트레오닌 생합성에 관여하는 효모유전자 THR1의 클로님, 염색체통합 및 발현)

  • 최명숙;이호주
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • The yeast gene THR1 encodes the homoserine kinase (EC 2.7.1.39: HKase) which catalyses the first step of the threonine specific arm at the end of the common pathway for methionine and threonine biosynthesis. A recombinant plasmid pMC3 (12.6 kilobase pairs, vector YCp50) has been cloned into E. coli HB101 from a yeast genomic library through its complementing activity of a thr1 mutation in a yeast recipient strain M39-1D. When subcloned into pMC32 (8.6kbp, vector YRp7) and pMC35 (8.3 kbp, vector YIp5), the HindIII fragment (2.7 kbp) of pMC3 insery was positive in the thrI complementing activity in both yeast and E. coli auxotrophic strains. The linearized pMC35 was introduced into the original recipient yeast strain and the mitotically stable chromosomal integrant was identified among the transformants. Through the tetrad analysis, the integration site of the pMC35 was localized to the region of THR1 structural gene at an expected genetic distance of approximately 11.1 cM from the ARG4 locus on the right arm of the yeast chromosome VIII. When episomically introduced into the auxotrophic cells and cultured in Thr omission liquid medium, the cloned gene overexpressed the HKase in the order of thirteen to fifteenfold, as compared with a wildtype. HKase levels are repressed by addition of threonine at the amount of 300 mg/l and 1, 190 mg/l for pMC32 and pMC3, respectively. Data from genetic analysis and HKase response thus support that the cloned HindIII yeast DNA fragment contains the yeast thr1 structural gene, along with necessary regulatory components for control of its proper expression.

  • PDF

Mosquitocidal Proteins from Escheriachia coli pSL 2-1 Clone and Bacillus sphaericus 1593 (Escheriachia coli pSL 2-1 클론과 Bacillus sphaericus 1593 균주가 생산한 모기치사 단백질)

  • Lee, Hong-Sup;Kim, Soo-Young;Lee, Hyung-Hoan
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.389-392
    • /
    • 1988
  • A clone pSL 2-1, which is a recombinant plasmid believed to contain the mosquitocidal crystal-line protein gene of the Bacillus sphaericus 1593, was expressed in Escherichia coli JM83 and the product of the clone was purified and identified. The unsolubilized mosquitocidal crystal proteins from the B. sphaericus had formed 43, 58, 64, 100, 113, and 130 Kd bands in the SDS-polyacrylamide gel, but the NaOH-solublized proteins at pH 12 formed 2 protein bands of 43- and 64Kd in the gel because the larger protein (precursor) bands were cleaved. The products of the pSL 2-1 clone was purified by Sephadex G-200 and only the fractions having lethal activity to the 3rd in-star larvae of mosquito Culex pipiens were analyzed by the gel. The only single protein band of 42 Kd toxic to the larvae was formed. The major toxic protein being produced from the B. sphaericus 1593 and the pSL 2-1 clone was found to be the 42 Kd.

  • PDF

Biological Control of Plant Pathogen by Pmdornonas sp. (Pseudomondas sp.에 의한 채소병원균의 생물학적 억제)

  • 김교창;김홍수;도대홍;조제민
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.263-270
    • /
    • 1992
  • For the selection of powerful antagonistic bacterium for biological control of soil borne Eminia carotovora subsp. carotovora causing rot of vegetable, excellent strains (S4, S14, 565) were selected from 1,196 strains of bacteria which were isolated from rhizosphere in vegetable root rot-suppresive soil. Strains were identified to be Pseudomonas species with Api 20NE kit. Antagonistic substance was produced in 523 synthetic broth medium at pH 7~8 and $30^{\circ}C$ during 3 days culture. The substance was stable in the pH range of 6 to 9. When the basal medium was supplemented with mannitol and sorbitol as carbon source and calcium chloride as metal salt, the production of the inhibitory substance was increased. The inhibitory acitivity was increased by the addition of fertilizer in soil. The isolated strains were resistant to the agricultural chemical such as benomyl and fosethyl-Al-folpet, and the antibiotics such as penicillin and lincomycin. We had found that Pseudomonas sp. S14 strain had a single plasmid. After treated with acridin orange for curing, we confirmed the existence of antagonistic gene in the chromosomal DNA.

  • PDF

High-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol

  • Gomaa, Ahmed E.;Deng, Zhiping;Yang, Zhimin;Shang, Liguo;Zhan, Yuhua;Lu, Wei;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study describes a single and double crossover-recombination system using an optimized vector-free allele-exchange protocol for gene disruption and gene replacement in a single species of the family Pseudomonadaceae. The protocol is based on self-ligation (circularization) for the DNA cassette which has been obtained by overlapping polymerase chain reaction (Fusion-PCR), and carries an antibiotic resistance cassette flanked by homologous internal regions of the target locus. To establish the reproducibility of the approach, three different chromosomal genes (ncRNA31, rpoN, rpoS) were knocked-out from the root-associative bacterium Pseudomonas stutzeri A1501. The results showed that the P. stutzeri A1501 mutants, which are free of any plasmid backbone, could be obtained via a single or double crossover recombination. In order to optimize this protocol, three key factors that were found to have great effect on the efficiency of the homologous recombination were further investigated. Moreover, the modified protocol does not require further cloning steps, and it enables the construction of multiple gene knock-in/out mutants sequentially. This work provides a simple and rapid mutagenesis strategy for genome editing in P. stutzeri, which may also be applicable for other gram-negative bacteria.

Mutation spectra induced by 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide in the supF gene of human XP-A fibroblasts

  • Kim, Byung-Wook;Kim, Byung-Chun;Cha, Jin-Soon;Pfeifer, Gerd P.;Lee, Chong-Soon
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.604-608
    • /
    • 2008
  • 1-Nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide are oxidative metabolites that are responsible for the mutagenicity of 1-nitropyrene. In this study, the mutation spectra induced by oxidative metabolites in human cells were determined using a shuttle vector assay. The mutation frequencies induced by 1-nitropyrene 9,10-oxide were 2-3 times higher than those induced by 1-nitropyrene 4,5-oxide. The base substitutions induced by 1-nitropyrene 4,5-oxide were $G{\rightarrow}A$ transitions, $G{\rightarrow}C$ transversions, and $G{\rightarrow}T$ transversions. In the case of 1-nitropyrene 9,10-oxide, $G{\rightarrow}A$ transitions, $G{\rightarrow}T$ transversions, $A{\rightarrow}G$ transitions and $G{\rightarrow}C$ transversions were observed. Most base substitution mutations induced by oxidative metabolites occurred at the guanine sites in the supF gene. These sequence-specific hot spots were commonly identified as 5'-GA sequences for both metabolites. On the other hand, the sequence-specific hot spots at the adenine sites were identified as 5'-CAC sequences for 1-nitropyrene 9,10-oxide. These results suggest that the oxidative metabolites of 1-nitropyrene induce sequence-specific DNA mutations at the guanine and adenine sites at high frequency.

Interaction of phage K11 lysozyme with phage RNA polymerase (Yeast two-hybrid 시스템을 통한 K11 phage lysozyme과 K11 phage RNA 중합효소와의 결합에 대한 연구)

  • Junn, Hyun-Jung;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • Recently phage K11 lysozyme was cloned and characterized in our lab. The K11 lysozyme was identified to have dual functions. It not only cuts a peptidoglycan bond in bacterial cell wall but also acts as an inhibitor of K11 RNA polymerase. It has been known that the T7 lysozyme binds specifically to T7 RNA polymerase and inhibits transcription. The dual activities of K11 lysozyme are atreeable to the case of T7 phage lysozyme and RNA polymerare. In order to identify the binding magnitude of K11 lysozyme with K11 RNA polymerase, yeast two-hybrid system was used. K11 phage lysozyme gene was introduced into pLexA plasmid and used as a prey. Also, K11 phage RNA polymerase gene was introduced into pJG4-5 and used as a bait. The binding between K11 lysozyme and K11 RNA polymerase was demonstrated by expression of reporter genes such as lacZ and leu2.

  • PDF

The Study of $NF-{\kappa}B(P50)$ Suppression mechanism with main Component of Bee Venom and Melittin on Human Synoviocyte

  • Kwon, Soon-Jung;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2005
  • Melittin,cationic 26-amino acid, is the principal component of the bee venom (BV) which has been used for treatment of inflammatory disease such as arthritis rheumatism NF-kB is activated by subsequent release of inhibitory IkB via activation of a multisubunit IkB kinase (IKK). We previously found that melittin bind to the sulfhydryl group of p50, a subunit of NF-kB. Since sulfhydryl group is present in kinase domain of IKKa and IKKb, melittin could modify IKK activity by protein-protein interaction. We therefore examined effect of melittin on IKK activities in sodium nitroprusside (SNP)-stimulated synoviocyte obtained from RA patients. Melittin suppressed the SNP-induced release of IkB resulted in inhibition of DNA binding activity of NF-kB and NF-kB-dependent luciferase activity. Consistent with the inhibitory effect on NF-kB activation, IKKa and IKKb activities were also suppressed by melittin. Surface plasmon resonance analysis realized that melitin binds to IKKa $(Kd\;=\;1.34{\times}10-9M)$ and IKKb$(Kd\;=\;1.0{\times}10-9M)$. Inhibition of IKKa and IKKb resulted in reduction of the SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of melittin on the IKKs activities, binding affinity of melittin to IKKs, and NO and PGE2 generation were blocked by addition of reducing agents dithiothreitol and glutathione. In addition, melittin did not show inhibitory effect in the transfected Synoviocytes with plasmid carrying dominant negative mutant IKKa (C178A) and IKKb (C179A). These results demonstrate that melittin directly binds to sulfhydryl group of IKKs resulting in IkBrelease, thereby inhibits activation of NF-kB and expression of genes involving in the inflammatory responses.

  • PDF

Construction of a Hammerhead Ribozyme that Cleaves Rice Black-Streaked Dwarf Virus RNA (흑조위축병 바이러스 RNA를 절단하는 망치머리형 라이보자임의 제작)

  • Kim, Ju-Kon;Sohn, Seong-Han;Lee, Sug-Soon;Hwang, Young-Soo;Park, Jong-Sug
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.522-527
    • /
    • 1995
  • To develop an antiviral agent for the rice black-streaked dwarf virus (RBSDV), a hammerhead type ribozyme, which has a potential target site on the genome segment 3, was designed. Oligonucleotides for the ribozyme and its substrate were synthesized, annealed, and cloned into a plasmid pBluescript II KS(+). Ribozyme and substrate RNAs were then synthesized by in vitro transcription with $T_3$ RNA polymerase, obtaining RNAs in expected size, 193 and 182 nucleotides, respectively. The substrate RNA was efficiently cleaved into two fragments when incubated with the ribozyme at $55^{\circ}C$, while the cleavage was not detected at $37^{\circ}C$. In addition, the segment 3 RNA of RBSDV was also cleaved into two fragments by the same ribozyme at $55^{\circ}C$. Taken together, our results demonstrated that the hammerhead ribozyme has an in vitro endonucleolytic activity and may be used as an antiviral agent in transgenic plants.

  • PDF

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.