• Title/Summary/Keyword: Plasma-nitriding

Search Result 133, Processing Time 0.03 seconds

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Effects of Plasma Nitriding on the Surface Characteristics of Tool Steels (공구강의 표면특성에 미치는 플라즈마 질화처리의 영향)

  • 이호종;최한철
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2003
  • Effects of plasma nitriding on the surface characteristics of tool steels have been investigated using wear tester, micro-hardness tester and scanning electron microscope (SEM) Commercial SKD 11 and SM45 alloy were used as specimens and were plasma nitrided using a plasma nitriding equipment for 5 hr and 10hr at $500^{\circ}C$. Microstructure and phase analysis were performed using SEM and XRD. It was found that plasma nitriding for lour at $500^{\circ}C$, compared with plasma nitriding for 10hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear resistance and hardness as nitriding time increased. SKD11 alloy showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with SM45 alloy.

A Study on the Plasma Nitriding Application for the Durability Improvement of the Exhaust Decoupler (배기계 디커플러의 내구 향상을 위한 플라즈마 질화에 관한 연구)

  • Hur, Deog-Jae;Kim, Sang-Sik;Chung, Tae-Jin;Kim, Do-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • This paper described the process of improving durability performance of the exhaust decoupler by the plasma nitriding. The properties of plasma nitriding treatment of AIS1304 stainless steel were tested using specimens before applying plasma nitriding to a mesh ring. In order to analyses the effect of plasma nitriding treatment on the mechanical properties, SEM(Scanning Electron Microscopes), roughness and hardness tester were used. Based on specimen plasma nitriding, we could find appropriate condition for application to the mesh ring of decoupler. To confirm the improved durability performance, we compared the number of cycles, which reaches to fracture, of the nitrided decoupler and that of the unnitrided decoupler by the bending cyclic test. In this test, the durability and wear resistance of the mesh ring are significantly improved by plasma nitriding treatment.

Effects of Plasma-Nitriding on the Surface Characteristics of Stainless Steels Containing Nb (Nb함유 스테인리스강의 표면특성에 미치는 플라즈마질화의 영향)

    • Journal of Surface Science and Engineering
    • /
    • v.37 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • In order to develop the corrosion and wear resistance of stainless steels, effects of plasma-nitriding on the surface characteristics of stainless steels containing Nb were investigated by utilizing a potentiostat. It was found that plasma nitriding at $350^{\circ}C$, compared with $500^{\circ}C$, produced a good corrosion resistance as nitriding time increased, whereas stainless steel containing low Nb content showed that pitting potential and corrosion potential decreased.

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

Characteristics on Corrosion Resistance of Medium High Carbon Low Alloy Steels using Plasma Nitriding Process (플라즈마 질화처리한 중, 고탄소저합금강의 내식성에 관한 연구)

  • 이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.702-711
    • /
    • 1998
  • The characteristics of corrosion resistance for the surface of medium high carbon steels and low alloy steels utilizing as manufacturing the machinery structures and machining tools and treating by plasma/ion nitriding process have been studied in terms of electrochemical polarization behav-iors including corrosion potential(Ecorr) anodic polarization trends and polarization resistance(Rp) The seven base materials showed a clear passivation behavior for the polarization tests in the ASTM standard solution 1N ${H_2){SO_4}$ Although the treated surface by plasma nitriding for the seven test materials showed a significant increase in hardness the treatment gave a detri-mental effect in corrosion resistance. The various characteristics including corrosion potential polarization curves microstructures corrosion current polarization resistance among non-treat-ed nitriding and/or soft-nitriding treated specimens have been investigated and some of the mechanisms discussed.

  • PDF

Mechanical Properties of DLC Films and Duplex Plasma Nitriding/DLC Coating Treatment Process (DLC 박막과 복합처리(Nitriding/DLC)한 박막의 기계적 특성 비교)

  • Park, Hyun-Jun;Kim, Min-Chae;Kim, Sang-Sub;Moon, Kyoung-Il
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.6
    • /
    • pp.306-311
    • /
    • 2020
  • In this work, diamond-like carbon (DLC) films are coated onto plasma nitrided AISI 4140 steel by DC-pulsed PECVD. One problem of DLC films is their very poor adhesion on steel substrates. The purpose of the nitriding was to enhance adhesion between the substrate and the DLC films. The white layer formation is avoided. Plasma nitriding increased adhesion from 8 N for DLC coating to 25 N for duplex coating. Duplex plasma nitriding/DLC coating was proven to be more effective in improving the adhesion. The purpose of the bond layer was to enhance adhesion between the substrate and the DLC films.

Research of Nitriding Process on Austenite Stainless Steel with Plasma Immersion Ion Beam (플라스마 이온증착 기술을 이용한 스테인리스강의 질화처리에 관한 연구)

  • Kim, Jae-Dol;Park, Il-Soo;Ok, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • Plasma immersion ion beam (PIIB) nitriding process is an environmentally benign and cost-effective process, and offers the potential of producing high dose of nitrogen ions in a way of simple, fast and economic technique for the high plasma flux treatment of large surface area with nitrogen ion source gas. In this report PIIB nitriding technique was used for nitriding on austenite stainless steel of AISI304 with plasma treatment at $250{\sim}500^{\circ}C$ for 4 hours, and with the working gas pressure of $2.67{\times}10^{-1}$ Pa in vacuum condition. This PIIB process might prove the advantage of the low energy high flux of ion bombardment and enhance the tribological or mechanical properties of austenite stainless steel by nitriding, Furthermore, PIIB showed a useful surface modification technique for the nitriding an irregularly shaped three dimensional workpiece of austenite stainless steel and for the improvement of surface properties of AISI 304, such as hardness and strength

The Study of Corrosion Behavior of Active Screen Plasma Nitrided Stainless Steels

  • Chiu, L.H.;Chang, C.A.;Yeh, S.H.;Chen, F.S.;Chang, Heng
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.251-256
    • /
    • 2007
  • Plasma nitriding is a surface treatment process which is increasingly used to improve wear, fatigue and corrosion resistance of industrial parts. Active screen plasma nitriding (ASPN) has both the advantages of the classic cold wall and the hot wall conventional dc plasma nitriding (DCPN) method and the parts to be nitrided are no longer directly exposed to the plasma. In this study, AS plasma nitriding has been used to nitride the UNS S31803 duplex stainless steel, AISI 304 and AISI 316 austenitic stainless steel, and AISI 420 martensitic stainless steel. Treated specimenswere characterized by means of microstructural analysis, microhardness measurements and electrochemical tests in NaCl aerated solutions. Hardness of the nitride cases of AISI 420 stainless steel by Knoop test can get up to 1300 HK0.1. From polarization tests, the corrosion current densities of AISI 420 and UNS S31803specimens ASPN at $420^{\circ}C$ were generally lower than those of their untreated substrates. The corrosion resistance of UNS S31803 duplex stainless steel can be enhanced by plasma nitriding at $420^{\circ}C$ Cowing to the formation of the S-phase.

A Study on the Duplex Treatment of Simultaneous Aluminizing-Chromizing and Plasma Nitriding for Improvement of Surface Properties (Al-Cr의 동시확산과 플라즈마 질화의 복합처리에의한 표면향상에 관한연구)

  • 양준혁;이상률;한전건
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.325-333
    • /
    • 1998
  • A duplex surface treatment process of simultaneous aluminizing-chromizing process followed by plasma nitriding was performed on AISI HI3 steel and STS 403 steel. The properties of these duplex-treated steels were investigated and were compared with those of steels treated by single process of either simultaneous aluminizing-chromizing or plasma nilriding, in terms of microstructure, microhardness and high temperature wear resistance. Sim~dtaneous alumizing-chromizing process was done using a 2-step coating cycle and plasma nitriding process was done at $530^{\circ}C$ for 1.5 hour. AISI HI3 steel and STS 403 steel showed a FeA1 compound layer of approximately 350$\mu\textrm{m}$ thickness on the surface after simultaneous diffusion coating and nitrided layer of approximately 70-80$\mu\textrm{m}$ formed after the subsequent plasma nitriding process. The microhardness was improved much more by the duplex surface heatment than only by plasma nitriding. In addition the duplex treated specimens showed an improved high temperature wear resistance.

  • PDF