• Title/Summary/Keyword: Plasma-circulating DNA

Search Result 6, Processing Time 0.017 seconds

Co-amplification at Lower Denaturation-temperature PCR Combined with Unlabled-probe High-resolution Melting to Detect KRAS Codon 12 and 13 Mutations in Plasma-circulating DNA of Pancreatic Adenocarcinoma Cases

  • Wu, Jiong;Zhou, Yan;Zhang, Chun-Yan;Song, Bin-Bin;Wang, Bei-Li;Pan, Bai-Shen;Lou, Wen-Hui;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10647-10652
    • /
    • 2015
  • Background: The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRM approach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma (PA) cases as a novel and effective diagnostic technique. Materials and Methods: We tested the sensitivity and specificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNA samples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirm mutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then used target-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRAS mutations and/or serum CA 19-9. Results: It was found that the sensitivity of Sanger reached 0.5% with COLD-PCR, whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probe HRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in the disease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples. The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA 19-9 increased to 0.934. Conclusions: It was concluded that COLD-PCR with unlabeled-probe HRM can be a sensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA for diagnosing and treating PA.

Plasma Circulating Cell-free Nuclear and Mitochondrial DNA as Potential Biomarkers in the Peripheral Blood of Breast Cancer Patients

  • Mahmoud, Enas H;Fawzy, Amal;Ahmad, Omar K;Ali, Amr M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8299-8305
    • /
    • 2016
  • Background: In Egypt, breast cancer is estimated to be the most common cancer among females. It is also a leading cause of cancer-related mortality. Use of circulating cell-free DNA (ccf-DNA) as non-invasive biomarkers is a promising tool for diagnosis and follow-up of breast cancer (BC) patients. Objective: To assess the role of circulating cell free DNA (nuclear and mitochondrial) in diagnosing BC. Materials and Methods: Multiplex real time PCR was used to detect the level of ccf nuclear and mitochondrial DNA in the peripheral blood of 50 breast cancer patients together with 30 patients with benign lesions and 20 healthy controls. Laboratory investigations, histopathological staging and receptor studies were carried out for the cancer group. Receiver operating characteristic curves were used to evaluate the performance of ccf-nDNA and mtDNA. Results: The levels of both nDNA and mtDNA in the cancer group were significantly higher in comparison to the benign and the healthy control group. There was a statistically significant association between nDNA and mtDNA levels and well established prognostic parameters; namely, histological grade, tumour stage, lymph node status andhormonal receptor status. Conclusions: Our data suggests that nuclear and mitochondrial ccf-DNA may be used as non-invasive biomarkers in BC.

Noninvasive Prenatal Diagnosis using Cell-Free Fetal DNA in Maternal Plasma: Clinical Applications

  • Yang, Young-Ho;Han, Sung-Hee;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Owing to the risk of fetal loss associated with prenatal diagnostic procedures (amniocentesis, chorionic villus sampling), noninvasive prenatal diagnosis (NIPD) is ultimate goal of prenatal diagnosis. The discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma in 1997 has opened up new probabilities for NIPD by Dr. Lo et al. The last decade has seen great development in NIPD. Fetal sex and fetal RhD status determination by cffDNA analysis is already in clinical use in certain countries. For routine use, this test is limited by the amount of cell-free maternal DNA in blood sample, the lack of universal fetal markers, and appropriate reference materials. To improve the accuracy of detection of fetal specific sequences in maternal plasma, internal positive controls to confirm to presence of fetal DNA should be analyzed. We have developed strategies for noninvasive determination of fetal gender, and fetal RhD genotyping using cffDNA in maternal plasma, using real-time quantitative polymerase chain reaction (RT-PCR) including RASSF1A epigenetic fetal DNA marker (gender-independent) as internal positive controls, which is to be first successful study of this kind in Korea. In our study, accurate detection of fetal gender through gestational age, and fetal RhD genotyping in RhD-negative pregnant women was achieved. In this assay, we show that the assay is sensitive, easy, fast, and reliable. These developments improve the reliability of the applications of circulating fetal DNA when used in clinical practice to manage sex-linked disorders (e.g., hemophilia, Duchenne muscular dystrophy), congenital adrenal hyperplasia (CAH), RhD incompatibility, and the other noninvasive pregnant diagnostic tests on the coming soon. The study was the first successful case in Korea using cffDNA in maternal plasma, which has created a new avenue for clinical applications of NIPD.

Circulating Tumor DNA in a Breast Cancer Patient's Plasma Represents Driver Alterations in the Tumor Tissue

  • Lee, Jieun;Cho, Sung-Min;Kim, Min Sung;Lee, Sug Hyung;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.48-50
    • /
    • 2017
  • Tumor tissues from biopsies or surgery are major sources for the next generation sequencing (NGS) study, but these procedures are invasive and have limitation to overcome intratumor heterogeneity. Recent studies have shown that driver alterations in tumor tissues can be detected by liquid biopsy which is a less invasive technique capable of both capturing the tumor heterogeneity and overcoming the difficulty in tissue sampling. However, it is still unclear whether the driver alterations in liquid biopsy can be detected by targeted NGS and how those related to the tissue biopsy. In this study, we performed whole-exome sequencing for a breast cancer tissue and identified PTEN p.H259fs*7 frameshift mutation. In the plasma DNA (liquid biopsy) analysis by targeted NGS, the same variant initially identified in the tumor tissue was also detected with low variant allele frequency. This mutation was subsequently validated by digital polymerase chain reaction in liquid biopsy. Our result confirm that driver alterations identified in the tumor tissue were detected in liquid biopsy by targeted NGS as well, and suggest that a higher depth of sequencing coverage is needed for detection of genomic alterations in a liquid biopsy.

Plasma Real Time-Quantitative Polymerase Chain Reaction of Epstein-Barr Virus in Immunocompetent Patients with Hepatitis

  • Hong, Ji-Hye;Bae, Yon-Jung;Sohn, Joon-Hyung;Ye, Byung-Il;Chun, Jin-Kyong;Kim, Hwang-Min
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.15 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • Purpose: Epstein-Barr virus (EBV) hepatitis is a usually asymptomatic and self-limiting disease in immunocompetent patients. However, the range of severity is wide, and the serological diagnosis is typically difficult until the convalescent phase. Thus, we examined the value of plasma EBV DNA real-time quantitative polymerase chain reaction (RT-qPCR) in EBV hepatitis for the timely diagnosis and the relationship between EBV viral load and clinical severity. Methods: Sixty samples were confirmed as having EBV infection by RT-qPCR with the EBV BALF5 gene sequence. We examined the clinical characteristics of EBV hepatitis by reviewing medical records. Results: The median total duration of fever was 8 days (range: 0-13 days). The mean peak value of aspartate aminotransferase (AST) was $241{\pm}214$ U/L, and the mean peak value of alanine aminotransferase (ALT) was $298{\pm}312$ U/L. There was no correlation between the serum levels of liver enzyme and plasma EBV DNA titer ($p$=0.1) or between median total duration of fever and EBV DNA titer ($p$=0.056). The median age of the EBV VCA IgM-negative group was lower compared with the EBV VCA IgM-positive group in EBV hepatitis (2 years vs. 6 years, $p$=0.0009). Conclusion: The severity of EBV hepatitis does not correlate with circulating EBV DNA load according to our data. Furthermore, we suggest that plasma EBV PCR may be valuable in young infants in whom the results of serology test for EBV infection commonly are negative.

Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/lpr mice in a B cell-specific manner

  • Ziyu Song;Meng Jin;Shenglong Wang;Yanzuo Wu;Qi Huang;Wangda Xu;Yongsheng Fan;Fengyuan Tian
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.190-201
    • /
    • 2024
  • Background: Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods: Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results: CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions: Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.