• Title/Summary/Keyword: Plasma welding

Search Result 280, Processing Time 0.024 seconds

Characteristics of Plasma Emission Signals in Fiber Laser Welding for API Steel (I) - Variation of Signals by Measuring Conditions - (API강재의 화이버레이저 용접시 유기하는 플라즈마의 방사특성 (I) - 측정조건에 따른 광신호의 변화 -)

  • Kim, Jong-Do;Lee, Chang-Je;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.51-57
    • /
    • 2010
  • Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at $60^{\circ}$, and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at $45{\sim}60^{\circ}$. However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of $45^{\circ}$ from the side.

Characteristics of Plasma Emission Signals in Fiber Laser Welding for API Steel (I) -Variation of Signals by Measuring Conditions- (API강재의 화이버레이저 용접시 유기하는 플라즈마의 방사특성 (I) -측정조건에 따른 광신호의 변화-)

  • Kim, Jong-Do;Lee, Chang-Je;Lee, Mok-Young
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.94-94
    • /
    • 2010
  • Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at $60^{\circ}$, and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at $45{\sim}60^{\circ}$. However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of $45^{\circ}$ from the side.

  • PDF

High Quality Plasma Cutting and Laser Cutting Technology (고품질 플라즈마 절단 및 레이저 절단기술)

  • Kim, Hwan Tae;Kil, Sang Cheol
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.30-34
    • /
    • 2017
  • The trend of the plasma cutting and laser cutting technology of metal alloys including high strength steel, aluminum alloys for the welding structures has been studied. The high-precision plasma systems offer a denser, higher energy arc that in effect produces a sharper cutting tool and high quality cutting products. The high-quality fiber laser systems with compact design and easy set-up make it ideal for cutting in the pipeline or steel structre manufacturing. This paper covers the scientometric analysis of the high efficient cutting technology which are based on the published research works in the 'plasma and laser', and 'cutting technology' obtained from Web of Science, and deals with the details of the background data of the plasma cutting and laser cutting technology.

Monitoring of plasma and spatter with photodiode in $CO_2$ laser welding (고출력 $CO_2$ 레이저 용접시 포토 다이오드를 이용한 플라즈마와 스패터 모니터링)

  • 박현성;이세헌;정경훈;박인수
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1999
  • Laser-welded Tailored Blank is the hottest thing in many automobile companies. But they demand on weld quality, reproducibility, and formability. So it is the great problem of automation of laser welding process. Therefore, it is requested to construct on-line process monitoring system on high accuracy. The light which is emitted from plasma and spatter in laser welding was detected by photo-diodes. It was found that the light intensity depends on welding speed. laser power, and flow rate of assist gas. The relationship between the plasma and spatter and the weld quality can be used for on-line laser weld monitoring systems.

  • PDF

Keyhole Welding of Aluminum Alloy by Variable Polarity Plasma Arc Welding (가변극성 플라즈마 아크용접을 이용한 알루미늄 합금의 키홀 용접)

  • Yu, Jun-Tae;Tak, Jeong-Su;Yun, Jong-Hun;Jang, Yeong-Sun;Lee, Yeong-Mu;Gang, Seok-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.72-74
    • /
    • 2006
  • The application of the variable polarity plasma arc welding process to A12219 is described. The thickness of aluminum alloy is 11.45mm and 5.08mm. 1-pass keyhole welding is applied to butt welding and 2-pass welding is also applied to thick material. During welding, all welding parameters are controlled by automated system and acquired by 10kHz rate. This paper covers the welding parameters, result of non-destructive test and tensile test.

  • PDF

A study on the real time quality estimation in laser tailored blank welding (레이저 테일러드 브랭크 용접의 실시간 품질판단 및 통계프로그램에 관한 연구)

  • Park, Young-Whan;Rhee, Se-Hum;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.791-796
    • /
    • 2001
  • Welding using lasers can be mass-produced in high speed. In the laser welding, performing real-time evaluation of the welding quality is very important in enhancing the efficiency of welding. In this study, the plasma and molten metal which are generated during laser welding were measured using the UV sensor and IR sensor. The results of laser welding were classified into five categories such as optimal heat input, little low heat input, low heat input, focus off, and nozzle change. Also, a system was formulated which uses the measured signals with a fuzzy pattern recognition method which is used to perform real-time evaluation of the welding quality and the defects which can occur in laser welding. Weld quality prediction program was developed using previous weld results and statistical program which could show the trend of weld quality and signal was developed.

  • PDF

Automatic Seam Tracking for Plasma Arc Welding of a Corrugation Panel (파형부재의 플라즈마 아크용접을 위한 자동 용접선 추적)

  • Yang, Joo-Woong;Park, Young-Jun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1506-1511
    • /
    • 2003
  • This paper describes an automatic weld seam tracking method of plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, the laser vision sensor for seam tracking is designed for sensing the seam position and controlling a torch automatically. To achieve precise seam tracking, the design of sensor head, image simulation, and calibration are carried out. Through a series of experiment result, compensation algorithm is added and real time error compensation is achieved. The experiment result shows that this vision sensor works effectively. It will provide more precise welding performance and convenience to the operator.

  • PDF

Visualization of weld plume using high-speed holography (고속 홀로그래피에 의한 용접 플룸 거동의 가시화)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF