• Title/Summary/Keyword: Plasma treating

Search Result 118, Processing Time 0.026 seconds

Influence of Debrisoquine on Renal Function of Dogs (Debrisoquine이 개의 신장기능에 미치는 영향)

  • 임동윤
    • YAKHAK HOEJI
    • /
    • v.25 no.1
    • /
    • pp.15-25
    • /
    • 1981
  • This study was attempted to investigate the action of debrisoquine, a sympathetic blocking agent presently employed in treating hypertension, on renal function and to elucidate the mechanism of its action. Debrisoquine, given intravenously, elicited increased urine flow, osmolar and free water clearances, along with marked increases in excretion of both sodium and potassium. Glomerular filtration rate also increased, but renal plasma flow tended to decrease, so that the filtration fraction tended to increase. Rates of reabsorption of sodium and potassium in renal tubules were also significantly diminished. The diuresis induced by debrisoquine was completely blocked by treatment with phentolamine and reserpine, and also markedly inhibited by acute renal denervation. Debrisoquine, when injected directly into a renal artery, produced antidiuretic effect and a reduction in urinary excretion of sodium and potassium, along with diminished renal plasma flow and increased filtration fraction. The above observations indicate that debrisoquine, when given intravenously, induces diuresis in the dog as a result of both diminished tubular reabsorption of electrolytes and of renal hemodynamic changes, which seem to be related to its inhibitory action of catecholamine-release from the sympathetic nerve endings.

  • PDF

Co-amplification at Lower Denaturation-temperature PCR Combined with Unlabled-probe High-resolution Melting to Detect KRAS Codon 12 and 13 Mutations in Plasma-circulating DNA of Pancreatic Adenocarcinoma Cases

  • Wu, Jiong;Zhou, Yan;Zhang, Chun-Yan;Song, Bin-Bin;Wang, Bei-Li;Pan, Bai-Shen;Lou, Wen-Hui;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10647-10652
    • /
    • 2015
  • Background: The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRM approach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma (PA) cases as a novel and effective diagnostic technique. Materials and Methods: We tested the sensitivity and specificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNA samples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirm mutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then used target-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRAS mutations and/or serum CA 19-9. Results: It was found that the sensitivity of Sanger reached 0.5% with COLD-PCR, whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probe HRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in the disease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples. The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA 19-9 increased to 0.934. Conclusions: It was concluded that COLD-PCR with unlabeled-probe HRM can be a sensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA for diagnosing and treating PA.

Effect of Phytosterol Treatment on Plasma Lipids and Glucose in Rats (식물성스테롤 처리가 흰쥐의 혈장지질 및 혈당농도에 미치는 영향)

  • Koo, Bon-Soon;Lee, Jang-Woo
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2004
  • Diet effect of separated-purified phytosterol, obtained from soybean scum, in rats during 4 weeks was as follows. At this experiment, checking points were plasma lipids and glucose concentration as well as insulin level in plasma, pancreas and femur. Purity of above phytosterol was 68.3%, and composition was capesterol 21%, ${\beta}$-stigmasterol 62.3%, sitosterol 11.0% and unknowns 5.8%, respectively. Triglyceride, total cholesterol and phospholipids content was decreased as increasing of phytosterol amount($0{\sim}3%,\;w/w$). But excessive treatments more than 3% there was no any additional effect. From these experiment optimum amount of phytosterol level was around 3%(w/w). But phytosterol treating didn't show any effects on the changes of carbohydrate relative tissues like plasma glucose concentration as well as insulin level in plasma, pancreas and femur.

Effect of Platelet-rich Plasma (PRP) on Regeneration of Rat Sciatic Nerve in a Silicone Chamber

  • Minn, Kyung-Won;Jeong, Eui-Cheol;Chang, Hak;Kwon, Sung-Tack;Kim, Suk-Wha;Baek, Rong-Min
    • Archives of Plastic Surgery
    • /
    • v.37 no.2
    • /
    • pp.105-109
    • /
    • 2010
  • Purpose: The purpose of this study is to determine the effect of platelet-rich plasma (PRP) on rat sciatic nerve regeneration in a 10 mm silicone chamber. Methods: A total of 6 inbred Lewis rats were used in this study. Bilateral sciatic neurectomy was performed on each rat. On one side, silicone chambers containing PRP solutions were implanted; on the contralateral side, the chambers without PRP were implanted as a control. In 12 weeks post-implantation, chambers were retrieved and both gastrocnemius muscles were excised. Nerves biopsy samples were examined under a light microscope after Masson trichrome staining. Results: Cross sections of the midpoints of PRP treated nerves were significantly larger and appeared more mature than those of controls. Conclusion: Based on morphological evidence, PRP has a positive effect on neural regeneration, and it may therefore be useful for treating peripheral nerve injuries.

Mechanical Properties of Vapor Grown Carbon Fiber/Epoxy Nanocomposites With Different Dispersion Methods

  • Khuyen, Nguyen Quang;Kim, Byung-Sun;Kim, Jin-Bong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.264-271
    • /
    • 2007
  • Effect of dispersion methods for Vapor Grown Carbon Fibers (VGCF) in epoxy caused the change in mechanical properties of VGCF/epoxy nanocomposites, such as tensile modulus and tensile strength. The influence of VGCF types - atmospheric plasma treated (APT) VGCF and raw VGCF - and their contents was discussed in detail. Treating VGCF with atmospheric plasma enhanced the surface energy, therefore improved the bonding strength with epoxy matrix. Two different methods used to disperse VGCF were ultrasonic and mechanical homogenizer methods. When using dispersion solutions, the VGCF demonstrated good dispersion in ethanol in both homogenizer and ultrasonic method. The uniform dispersion of VGCF was investigated by scanning electron microscopy (SEM) which showed well-dispersion of VGCF in epoxy matrix. The tensile modulus of raw VGCF/epoxy nanocomposites obtained by ultrasonic method was higher than that of one obtained by homogenizer method. APT VGCF/epoxy nanocomposites showed higher tensile strength than that of raw VGCF/epoxy nanocomposites.

A Study on Adhesive Properties of Cellulose Triacetate Film by Argon Low Temperature Plasma Treatment (아르곤 저온 플라즈마 처리에 의한 CTA 필름의 접착성 연구)

  • Koo Kang;Park Young Mi
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2004
  • The polarizing film application exploits the unique physicochemical properties between PVA(Poly vinyl alcohol) film and CTA(Cellulose triacetate) film. However, hardly any research was aimed at improving the adhesion characteristics of the CTA film by radio frequency(RF) plasma treatment at argon(Ar) gaseous state. In this report, we deal with surface treatment technology for protective CTA film developed specifically for high adhesion applications. After Ar plasma, surface of the films is analyzed by atomic force microscopy(AFM), roughness parameter and peel strength. Furthermore, the wetting properties of the CTA film were studied by contact angle analysis. Results obtained for CTA films treated with a glow discharge showed that this technique is sensitive to newly created physical functions. The roughness and peel strength value increased with an increase in treatment time for initial treatment, but showed decreasing trend for continuous treatment time. The result of contact angle measurement refer that the hydrophilicity of surface was increased. AFM studies indicated that no considerable change of surface morphology occurred up to 3 minutes of treatment time, but a considerable uneven of surface structure resulted from treating time after 5 minutes.

Microbial Inactivation in Kimchi Saline Water Using Microwave Plasma Sterilization System (Microwave Plasma Sterilization System을 이용한 배추 절임수의 미생물 저감화)

  • Yu, Dong-Jin;Shin, Yoon-Ji;Kim, Hyun-Jin;Song, Hyeon-Jeong;Lee, Ji-Hye;Jang, Sung-Ae;Jeon, So-Jung;Hong, Soon-Taek;Kim, Sung-Jae;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • This study was conducted to decrease the microbial hazard in kimchi saline water with microwave plasma sterilization system and to evaluate the inactivation of foodborne pathogens by the microwave plasma sterilization system as a non-thermal treatment. Contamination of coliform, Escherichia coli, and yeasts and molds were detected in the used saline water, and the microbial populations increased as the saline water was reused repeatedly. The $D_{10}$-values of E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes by the microwave plasma sterilization system were 0.48, 0.52, and 0.45 cycle, respectively. In addition, the microbial populations of coliform, E. coli, Salmonella spp., total aerobic bacteria, and yeasts and molds in the used kimchi saline water were significantly decreased by treating the saline water using the microwave plasma sterilization system. Therefore, these results suggest that microwave plasma sterilization system can be useful in improving the microbial safety of the used saline water.

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

Effects of polyphenols of Cocos nucifera husk fibreon selected indices of cardiovascular diseases in mice

  • Adebayo, Joseph Oluwatope;Adewumi, Olumuyiwa Sunday;Baruwa, Simbiat Titilayo;Balogun, Elizabeth Abidemi;Malomo, Sylvia Orume;Olatunji, Lawrence Aderemi;Soladoye, Ayodele Olufemi
    • CELLMED
    • /
    • v.6 no.2
    • /
    • pp.12.1-12.7
    • /
    • 2016
  • Cocos nucifera (C. nucifera) oil is indigenously used to treat cardiovascular diseases. However, coconut husk fibre (which is rich in polyphenols) has not been screened for this property. Based on the ethnomedicinal use of polyphenols in treating cardiovascular diseases, this study was carried out to evaluate the effects of polyphenols of C. nucifera husk fibre on selected cardiovascular disease indices in mice. Fifty adult male Swiss albino mice were assigned randomly into five groups (A-E). Mice in groups B, C, D and E were administered 31.25, 62.5, 125, and 250 mg/kg body weight polyphenols of ethyl acetate extract of C. nucifera husk fibre respectively while the control group (A) mice received 5% DMSO for seven days. The mice were sacrificed twenty four hours after the last administration of polyphenols. Heart and plasma lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities and plasma lipid profile were determined. Results revealed significant reduction (*p< 0.05) in plasma levels of total cholesterol and LDL-cholesterol with no significant change (*p> 0.05) in HDL-cholesterol, triglyceride and VLDL levels in the plasma at all doses of polyphenols administered compared to controls. There was significant reduction (*p< 0.05) in the activities of heart AST and LDH while plasma ALT, AST, and ALP activities were not significantly altered (*p> 0.05) at all doses of polyphenols administered compared to controls. These results suggest that the polyphenols of C. nucifera husk fibre possess cardio-protective properties and also indicate their possible use in the treatment of cardiovascular diseases.

Surface Treatment of Mg95Zn4.3Y0.7 Alloy Powder Consolidates using Plasma Electrolytic Oxidation (플라즈마 전해산화공정을 이용한 Mg95Zn4.3Y0.7 합금분말 성형체의 표면특성제어)

  • Kim, J.H.;Choi, H.S.;Kim, D.H.;Hwang, D.Y.;Kim, H.S.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • The investigation is to modify the mechanical and chemical properties of Mg alloys using a combination of rapid solidification and surface treatment. As the first approach, $Mg_{95}Zn_{4.3}Y_{0.7}$ was gas atomized and pressure sintered by spark plasma sintering process (SPS), showing much finer microstructure and higher strength than the alloys as cast. Further modification was performed by treating the surface of PM Mg specimen using Plasma electrolytic oxidation (PEO) process. During the PEO processing, MgO layer was initiated to form on the surface of Mg powder compacts, and the thickness and the density of MgO layer were varied with the reaction time. The thickening rate became low with the reaction time due to the limited diffusion rate of Mg ions. The surface morphology, corrosion behavior and wear resistance were also discussed.